ENGINEERING HANDBOOK

Engineering Data for Copper and Aluminum Conductor Electrical Cables

Okonite Cables...A higher Standard!

Introduction

This booklet is designed to help engineers in the selection of conductor sizes and help in the installation of cable systems. Information from many sources has been compiled in this booklet for your convenience.

The information in Section 1 provides general conductor data. Tables are provided which give the cross sectional area, number of strands, outside diameter and weight of solid wire, class B and C strandings and Class G, H and I flexible strandings. There is also data available to calculate the ac or do resistance of conductors at many temperatures and frequencies.

Section 2 contains the necessary tables and formulas to determine the required current for a cable circuit.

Normally, the ampacity of a cable is limited by heating but, for some circuits the voltage drop is important. For this reason, in Section 3 information on voltage regulation is included. Formulas for calculating the voltage drop are given along with a nomogram for determining the reactance of conductors.

For some applications large short circuit currents must be carried. Section 4 contains short circuit ampacities for conductors and shields that may be useful in some applications.

The purpose of shielding and the effects of grounding shields are discussed in Section 5. Tables give the voltages above which shielding should be considered. Formulas for calculating shield losses associated with multigrounded shields are presented.

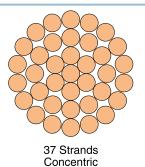
Ampacity tables and various correction factors are given in Section 6. The ampacity data applies to thermosetting (vulcanized) insulations rated at 90°C and 105°C conductor temperatures. The conditions used in calculating table values are given at the top of each table. The appropriate correction factor for any installation condition varying from those for which the tables were calculated should be used. Also included is the NFPA 70, National Electrical Code, 600 Volt ampacity table.

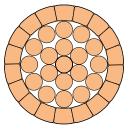
Cable failures may result from poor installation practices. Compliance with the procedures outlined in Section 7 may prolong the life of a cable. Information on conduit, buried, borehole and self-supporting installations is provided.

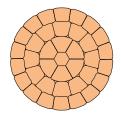
Information on high voltage dc proof testing, reel capacities, jacket materials selection and other miscellaneous information is given in Sections 8 and 9.

Table of Contents

SECTION 1		Three Conductor	
General Conductor Information	1 - 8	Underground Ducts	30 - 31
Stranding	1 - 2	Underground Direct Burial	32 - 33
dc Resistance	3 - 4	In Air	36
ac/dc Ratios	5 - 7	In Conduit	38
Physical & Mechanical Properties	8	N.E.C. Code Table	38
SECTION 2 General Information Motor Currents Systems Diagrams Voltage Rating	9 - 11 9 - 10 10 11	SECTION 7 Installation Practices Conduit Sizes Maximum Pulling Tensions Example Problems	39 - 51 39 - 40 40 41
Electrical Formulas	11	Minimum Bending Radii	42
SECTION 3 Voltage Regulation	12 - 12	Installation Procedures Borehole Cables (Safety Factor)	43 - 45 46
SECTION 4 Short Circuit Currents Conductor Currents	14 - 15 14	Sag and Tension Calculations	47 - 51
Shielding Currents	15	SECTION 8	FO F0
SECTION 5 Shielding Discussion Induced Voltage, Current, and los	16 - 20 16 - 18	High Voltage Proof Testing High Voltage dc Field Testing dc Field Acceptance Testing	52 - 53 52 52
Formulas	.s, 19	Test Limitations	52
Example Problems	20	Test Notes	53
SECTION 6 - Ampacity Tables Discussion and Correction Factor	21 - 38	Maintenance Proof Testing Frequency of Tests	53 53
Tables	22-38	SECTION 9	
Single Conductors Underground ducts	22 - 23	Miscellaneous Information Formulas for Calculating	54 - 60
Underground Direct Burial	24 - 25	Charging Current	54
In Air	34	Capacitance of Cables	54
In Conduit	37	Insulation Resistance	54
Triplexed Conductors Underground Ducts	26 - 27	Jacket Materials Selection Chart Decimal Equivalents & Temperate	
Underground Direct Burial	28 - 29	Conversion Table	56
In Air In Conduit	35 37	Equivalents of Sq. MM. Sq. In. and Circular Mils Reel Capacities	57
		Reusable Reels	58
		Reusable Reels	59 - 60


List of Tables


		Page
SECTION 1 Gener	ral Conductor Information	
TABLE 1 - 1	Compact and Compressed Diameters	1
TABLE 1 - 1	Solid and Concentric Stranding	1
TABLE 1 - 2	Flexible Stranding	2
TABLE 1 - 3	Resistance in Ohms per 1000 feet per Conductor at 20°C	
	and 25°C of solid wire and Class B Concentric Strands Copper	
	and Aluminum Conductors	3
TABLE 1 - 4	Copper and Aluminum Resistance-Temperature Correction Factors	4
TABLE 1 - 5	AC/DC Resistance Ratios - for Copper and Aluminum Conductors,	
	60 Hertz (65°C)	5
TABLE 1 - 6	Conductor Resistance and Ampacities at High Frequencies	6
TABLE 1 - 7	Copper Conductor Resistance and Ampacities at High Frequencies	7
TABLE 1 - 8	Physical & Mechanical Properties of Conductor Materials	8
TABLE 1 - 9	Breaking Strength - Bare Copper and Aluminum Wire	8
SECTION 2 Gener		
TABLE 2 - 1	Full-Load Currents of Motors in Amperes	g
TABLE 2 - 2	Full-Load Currents of Motors in Amperes	10
TABLE 2 - 3	Electrical Formulas for Determining Amperes, Horsepower,	
	Kilowatts and Kilovolt-Amperes	11
SECTION 3 Voltag		
TABLE 3 - 1	Reactance of Conductors at 60Hz	13
SECTION 4 Short	Circuit Currents	
TABLE 4 - 1	Allowable Short Circuit Currents of Insulated Copper and	
	Aluminum Conductors	14
TABLE 4 - 2	Permissible Short Circuit Currents for Copper Shielding	
	Tape-Amperes	15
SECTION 5 Shield		
TABLE 5 - 1	Operating Voltage Limits, kV, above which Insulation Shielding	
	is required	16
TABLE 5 - 2	Maximum Lengths for Single Conductor Cables with Shields	18
TABLE 5 - 3	Formulas for Calculating Shield Voltages-Currents and Losses for	
	Single-Conductor Cables	19
SECTION 6 Ampa	city Tables	
TABLE 6 - 1	Correction Factors for Various Ambient Air Temperatures	21
TABLE 6 - 2	Correction Factors for Various Ambient Earth temperatures	21
TABLE 6 - 3	Group Correction Factors - Cables in Air	21
TABLE 6 - 4	Group Correction Factors - Conduits in Air	21
TABLE 6 - 5	Single Conductor Cable Underground Ducts - One Circuit, Three Cables	
	in Separate Ducts	22
TABLE 6 - 6	Single Conductor Cable Underground Ducts - Two Circuits, Six Cables	
	in Separate Ducts	23
TABLE 6 - 7	Single Conductor Cable Underground Ducts - Three Circuits, Nine	
	Cables in Separate Ducts	23
TABLE 6 - 8	Single Conductor Cable Direct Burial - One Circuit, Three Cables	24
TABLE 6 - 9	Single Conductor Cable Direct Burial - Two Circuits, Six Cables	25
TABLE 6 - 10	Triplexed Cable Underground Ducts - One Circuit, Three Single or	
	Triplexed Conductors per Duct	26
TABLE 6 - 11	Triplexed Cable Underground Ducts - Three Circuits, Three Single	
	or Triplexed Conductors per Duct	27
TABLE 6 - 12	Triplexed Cable Underground Ducts - Six Circuits, Three Single or	
	Triplexed Conductors per Duct	27


List of Tables

		Page
TABLE 6 - 13	Triplexed Cable Direct Burial - One Circuit	29
TABLE 6 - 14	Triplexed Cable Direct Burial - Two Circuits	29
TABLE 6 - 15	Three Conductor Cable Underground Ducts - One Circuit, One Cable in Duct Bank	30
TABLE 6 - 16	Three Conductor Cable Underground Ducts - Three Circuits, Three	0.4
TABLE 0 47	Cables in Duct Bank	31
TABLE 6 - 17	Three Conductor Cable Underground Ducts - Six Circuits, Six Cables in Duct Bank	31
TABLE 6 - 18	Three Conductor Cable Direct Burial - One Circuit, One Cable	33
TABLE 6 - 19	Three Conductor Cable Direct Burial - Two Circuits, Two Cables	33
TABLE 6 - 20	Single Conductor Cable in Air	34
TABLE 6 - 21	Three Single Conductor Cables in Air	35
TABLE 6 - 22	Three Conductor Cable in Air	36
TABLE 6 - 23	Three Single Conductor Cables in Conduit - in Air	37
TABLE 6 - 24	Three Conductor Cable - Conduit in Air - One Isolated Cable	38
TABLE 6 - 25	NEC Code Installations Ampacity at 75°C Conductor Temperature	
	30°C Ambient	38
SECTION 7 Installat	tion Practices	
TABLE 7 - 1	Dimensions of Conduit	39
TABLE 7 - 2	Percent Internal Area of Conduit or Tubing	39
TABLE 7 - 3	Percent Internal Diameter of Conduit or Tubing	39
TABLE 7 - 4	Maximum Allowable Diameter (in Inches) of Individual Cables in	
	Given Size of Conduit	39
TABLE 7 - 5	Values of e ^{fa}	40
TABLE 7 - 6	Minimum Bending Radii - Power Cables without Metallic Shielding	
	or Armor	42
TABLE 7 - 7A	Minimum Bending Radii - Twisted Pair Instrumentation Cable	42
TABLE 7 - 7	Minimum Bending Radii - Power Cables with Metallic Shielding	
	or Armor	42
TABLE 7 - 8	Minimum Bending Radii - Rubber Jacketed Flexible Portable	
	Power and Control Cables used on Take-up Reels and Sheaves	42
TABLE 7 - 9	Galvanized Steel Wire - Tensile Strength - Weight - Diameters	46
TABLE 7 - 10	Sag Messenger Characteristics	47
TABLE 7 - 11	Sag Tables	49
TABLE 7 - 12	Sag Calculating Charts	50
TABLE 7 - 13	Sag Calculating Charts	51
SECTION 8 High Vo		
TABLE 8 - 1	High Voltage Field Acceptance Test	52
TABLE 8 - 2	High Voltage Maintenance Test	53
TABLE 8 - 3	Frequency of Proof Testing	53
SECTION 9 Miscella		
TABLE 9 - 1	Jacket Materials Selection Chart	55
TABLE 9 - 2	Decimal Equivalents of One Inch	56
TABLE 9 - 3	Temperature Conversion Table	56
TABLE 9 - 4	Equivalents of Sq. mm, Sq. in. and Circular Mils	57
TABLE 9 - 5	Capacity of Reusable Reels, Feet	58
TABLE 9 - 6	Dimensions and Capacities of Reusable Reels for Wires and Cables	59-60

Stranding

37 Strands Compressed

37 Strands Compact

Conductor stranding

Table 1-1

		0.0	NID COMPLICTO	200				STRANDED	CONDUCTOR	S		
		SC	OLID CONDUCTO)W2			CLASS B		C	CLASS C		
AWG	kcmil	Diameter inch		tor Weight / k ft.)	Number of Strands	Compact Diameter Inch	Compressed Diameter inch	Concentric Diameter inch	No. of Strands	Diameter inch	lbs.	or Weight / k ft B & C
			Aluminum	Copper	0.0.0.0						Aluminum	Copper
24 22 20 19	0.404 0.640 1.02 1.29	0.0201 0.0253 0.0320 0.0359	0.942 1.19	1.22 1.94 3.10 3.90	7 7 7 7	_ _ _	_ _ _	0.0230 0.0290 0.0360 0.0410	_ _ _ _	_ _ _ _	_ _ _ _	1.24 1.99 3.16 3.99
18 16 15 14	1.62 2.58 3.26 4.11	0.0403 0.0508 0.0571 0.0641	1.49 2.38 3.01 3.78	4.92 7.81 9.87 12.4	7 7 7 7	_ _ _ _	0.0629 0.0710	0.0460 0.0576 0.0648 0.0726	19 19 19	0.0590 0.0650 0.0735	_ _ _ _	4.99 7.97 10.08 12.66
13 12 11 10 9	5.18 6.53 8.23 10.38 13.09	0.0720 0.0808 0.0907 0.1019 0.1144	4.79 6.01 7.57 9.56 12.04	15.7 19.8 24.9 31.43 39.62	7 7 7 7 7	_ _ _ _	0.0792 0.0890 0.0998 0.113 0.126	0.0816 0.0915 0.103 0.116 0.130	19 19 19 19 19	0.0825 0.0925 0.104 0.117 0.131	6.103 7.719 9.725 12.24	15.99 20.10 25.43 32.04 40.33
8 7 6 5 4	16.51 20.82 26.24 33.09 41.74	0.1285 0.1443 0.1620 0.1819 0.2043	15.20 19.16 24.15 30.45 38.41	49.98 63.03 79.44 100.2 126.3	7 7 7 7 7	0.134 0.151 0.169 0.189 0.213	0.142 0.159 0.178 0.200 0.225	0.146 0.164 0.184 0.206 0.232	19 19 19 19 19	0.148 0.166 0.186 0.208 0.234	15.50 19.49 24.57 31.06 39.10	51.05 64.19 80.95 102.3 128.8
3 2 1 1/0 2/0	52.62 66.36 83.69 105.6 133.1	0.2294 0.2576 0.2893 0.3249 0.3648	48.43 61.07 77.03 97.15 122.5	159.3 200.9 253.3 319.5 402.8	7 7 19 19 19	0.238 0.268 0.299 0.336 0.376	0.252 0.283 0.322 0.362 0.405	0.260 0.292 0.332 0.373 0.419	19 37 37 37 37	0.263 0.296 0.333 0.374 0.420	49.32 62.24 78.52 99.11 124.8	162.5 205.0 258.6 326.5 411.0
3/0 4/0 — —	167.8 211.6 250 300 350	0.4096 0.4600 0.5000 0.5477 0.5916	154.4 194.7 — — —	507.8 640.5 — — —	19 19 37 37 37	0.423 0.475 0.520 0.570 0.616	0.456 0.512 0.558 0.611 0.661	0.470 0.528 0.575 0.630 0.681	37 37 61 61 61	0.471 0.529 0.576 0.631 0.681	157.4 198.2 234.3 280.9 328.3	518.3 652.9 771.9 925.3 1082
_ _ _ _	400 450 500 550 600	0.6325 0.6708 0.7071 —	_ _ _ _	1111	37 37 37 61 61	0.659 0.700 0.736 0.775 0.813	0.706 0.749 0.789 0.829 0.866	0.728 0.772 0.813 0.855 0.893	61 61 61 91 91	0.729 0.773 0.814 0.855 0.893	375.1 421.9 468.3 516.0 562.6	1236 1390 1542 1700 1853
_ _ _	650 700 750 800 900	_ _ _ _ _	_ _ _ _	_ _ _ _	61 61 61 61 61	0.845 0.877 0.908 0.938 0.999	0.901 0.935 0.968 1.000 1.060	0.929 0.964 0.998 1.031 1.094	91 91 91 91 91	0.930 0.965 0.999 1.032 1.093	608.9 655.8 703.2 749.6 844.0	2006 2160 2316 2469 2780
_ _ _ _	1000 1100 1250 1500 1750	— — — —		1111	61 61 91 91 127	1.060 *1.092 — — —	1.117 1.173 1.250 1.370 1.480	1.152 1.209 1.289 1.412 1.526	91 127 127 127 127 169	1.153 1.210 1.290 1.413 1.527	963.8 1030 1172 1406 1641	3086 3393 3859 4632 5404
	2000 2500		_		127 127		1.583 1.769	1.632 1.824	169 169	1.632 1.824	1875 2370	6176 7794

^{*} The diameter listed is for a 1100 kcmil, compact round conductor, 61 wire, class A construction.

Stranding

Flexible stranding

Table 1-2

Conductor		CLAS	SS G			CLA	H 22		CLASS I				
Size AWG or kcmil	* Number of Wires	Diameter of Each Wire Mils	Approx. OD Inches	Weight Lbs. per 1000 Ft.	* Number of Wires	Diameter of Each Wire Mils	Approx. OD Inches	Weight Lbs. per 1000 Ft.	* Number of Wires	Diameter of Each Wire Mils	Approx. OD Inches	Weight Lbs. per 1000 Ft.	
14 12 10	49 49 49	9.2 11.6 14.6	0.083 0.104 0.131	12.8 20.3 32.3					26	20.1	0.125	32.5	
8 6	49 49	18.4 23.1	0.166 0.208	51 82	133 133	11.1 14.0	0.167 0.210	52 82	41 63	20.1 20.1	0.156 0.207	51 80	
4 2	49 49	29.2 36.8	0.263 0.331	130 207	133 259	17.7 16.0	0.266 0.335	132 210	105 161	20.1 20.1	0.263 0.319	134 205	
1 1/0 2/0	133 133 133	25.1 28.2 31.6	0.377 0.423 0.474	264 334 419	259 259 259	18.0 20.2 22.7	0.378 0.424 0.477	266 334 422	210 266 342	20.1 20.1	0.367 0.441 0.500	267 342	
3/0 4/0	133 133	35.5 39.9	0.533 0.599	529 668	259 259	25.5 28.6	0.477 0.536 0.601	533 670	418 532	20.1 20.1 20.1	0.549 0.613	439 537 683	
250 300	259 259	31.1 34.0	0.653 0.714	795 945	427 427	24.2 26.5	0.653 0.716	795 953	637 735	20.1 20.1	0.682 0.737	825 955	
350 400	259 259	36.8 39.3	0.773 0.825	1110 1265	427 427	28.6 30.6	0.772 0.826	1110 1270	980 980	20.1	0.800 0.831	1145 1270	
500 600 750	259 427 427	43.9 37.5	0.922 1.013 1.131	1585 1910	427 703 703	34.2 29.2 32.7	0.923 1.022 1.145	1590 1920 2410	1225 1470	20.1 20.1 20.1	0.941 1.027 1.235	1590 1905	
1000	427	41.9 48.4	1.307	2385 3180	703	37.7	1.320	3205	1862 2527	20.1	1.427	2435 3305	
1250 1500	427 427	54.1 59.3	1.461 1.601	3975 4775	703 703	42.2 46.2	1.477 1.617	4015 4815	3059 3724	20.1	1.564 1.715	4000 4875	
1750 2000	703 703	49.9 53.3	1.747 1.866	5620 6415	1159 1159	38.9 41.5	1.751 1.868	5625 6400	4389 4921	20.1 20.1	1.880 2.003	5745 6440	

^{*}Per ICEA S-75-381

Specifications applying to conductors

COPPER CONDUCTORS	ALUMINUM CONDUCTORS
ASTM B-3 Soft or Annealed Copper	ASTM B-230 Electrical Grade Aluminum 1350-H19
ASTM B-5 Electrical Grade Copper	ASTM B-231 Class A, B, C or D Stranded 1350 Aluminum
ASTM B-8 Class A, B, C or D Stranded	ASTM B-233 Electrical Grade 1350 Aluminum Drawing Stock
ASTM B-33 Soft or Annealed Tin Coated	ASTM B-400 Compact Round Stranded 1350 Aluminum
ASTM B-496 Compact Round Stranded	ASTM B-609 Annealed and Intermediate Temper EG 1350 Aluminum
ASTM B-784 Modified Concentric Lay Stranded	ASTM B-786 19 Wire Combination Unilay 1350 Aluminum
ASTM B-787 19 Wire Combination Unilay	ASTM B-800 8000 Series Aluminum Alloy Annealed and Intermediate Temper
ASTM B-835 Compact Round Stranded Single Input Wire	ASTM B-801 8000 Series Aluminum Alloy Wires, Compact, Compressed and
ASTM B-902 Compressed Round Stranded Single Input Wire	Concentric Class A, B, C, and D Stranded
	ASTM B-836 Compact Round Stranded Single Input Wire
	ASTM B-901 Compressed Round Stranded Single Input Wire

FLEXIBLE COPPER CONDUCTORS

B-172 Rope-Lay Stranded Conductors having Bunch-Stranded Members

B-173 Rope-Lay Stranded Conductors having Concentric-Stranded Members

B-174 Bunch-Stranded Conductors

dc Resistance

Resistance in Ohms per 1000 feet per conductor at 20°C and 25°C of solid wire and class B concentric strands copper and aluminum conductor

Table 1-3

Conductor	3 ССР		Al		NCOATED COPPI D ALUMINUM	ER				ANNEALED CO	OATED COPPER	
Size, AWG or		Solid			Stranded Class B			So	lid	Strar Clas		
kcmil	20	°C	25°C	<u>;</u> *	20°	°C	25	°C*	20°C 25°C*		20°C	25°C*
	CU	AL	CU	AL	CU	AL	CU	AL	CU	CU	CU	CU
24 22 20	25.7 16.2 10.1	_ _ _	26.2 16.5 10.3	=	— — 10.3	_ _ _	— — 10.5	_ _ _	26.8 16.9 10.5	27.3 17.2 10.7	— — 11.0	 11.2
19 18 16	8.05 6.39 4.02	_ _ _	8.21 6.51 4.10	=	6.51 4.10	_ _ _	 6.64 4.18	_ _ _	8.37 6.64 4.18	8.53 6.77 4.26	6.92 4.35	7.05 4.44
14 12 10	2.52 1.59 0.999	4.1400 2.6000 1.6400	2.57 1.62 1.02	4.22 2.66 1.67	2.57 1.62 1.02	2.65 1.67	2.62 1.65 1.04	 2.70 1.70	2.62 1.62 1.04	2.68 1.68 1.06	2.68 1.68 1.06	2.73 1.72 1.08
9 8 7	0.792 0.628 0.498	1.3000 1.0300 0.8170	0.808 0.641 0.508	1.32 1.05 0.833	0.808 0.641 0.518	1.33 1.05 0.833	0.824 0.654 0.518	1.35 1.07 0.850	0.816 0.646 0.513	0.831 0.659 0.523	0.840 0.666 0.528	0.857 0.679 0.539
6 5 4	0.395 0.313 0.248	0.6480 0.5140 0.4070	0.403 0.319 0.253	0.661 0.524 0.415	0.403 0.320 0.253	0.661 0.524 0.416	0.410 0.326 0.259	0.674 0.535 0.424	0.407 0.323 0.256	0.415 0.329 0.261	0.419 0.333 0.264	0.427 0.339 0.269
3 2 1	0.197 0.156 0.124	0.3230 0.2560 0.2030	0.201 0.159 0.126	0.330 0.261 0.207	0.201 0.159 0.126	0.330 0.262 0.206	0.205 0.162 0.129	0.336 0.267 0.211	0.203 0.161 0.128	0.207 0.164 0.130	0.209 0.166 0.131	0.213 0.169 0.134
1/0 2/0 3/0	0.0982 0.0779 0.0618	0.1610 0.1280 0.1010	0.100 0.0795 0.0630	0.164 0.130 0.103	0.100 0.0795 0.0630	0.165 0.131 0.103	0.102 0.0811 0.0642	0.168 0.133 0.105	0.101 0.0798 0.0633	0.103 0.0814 0.0645	0.104 0.0827 0.0656	0.106 0.0843 0.0668
4/0 250 300	0.0490 — —	0.0803 — —	0.0500 — —	0.082 — —	0.0500 0.0423 0.0353	0.0821 0.0695 0.0579	0.0509 0.0431 0.0360	0.0836 0.0708 0.0590	0.0502 — —	0.0512 — —	0.0515 0.0440 0.0367	0.0525 0.0449 0.0374
350 400 500	_ _ _			_ 	0.0302 0.0264 0.0212	0.0496 0.0434 0.0348	0.0308 0.0270 0.0216	0.0505 0.0442 0.0354	_ _ _	_ _ _	0.0314 0.0272 0.0218	0.0320 0.0278 0.0222
600 750 1000	_ 			_	0.0176 0.0141 0.0106	0.0290 0.0232 0.0174	0.0180 0.0144 0.0108	0.0295 0.0236 0.0177	_ _ _		0.0184 0.0145 0.0109	0.0187 0.0148 0.0111
1100 1250 1500 1750				_ _ _ _	0.00962 0.00846 0.00705 0.00604	0.0158 0.0139 0.0116 0.00992	0.00981 0.00863 0.00719 0.00616	0.0161 0.0142 0.0118 0.0101			0.00871 0.00726 0.00622	0.01020 0.00888 0.00740 0.00634
2000 2500	_		_	_	0.00529 0.00427	0.00869 0.00702	0.00539 0.00436	0.00885 0.00715	_	_	0.00544 0.00440	0.00555 0.00448

^{*}NOTE: To determine resistance for temperatures other than 25°C use a multiplying factor shown on page 4.

Okonite Cables Section 1

General Conductor Information

dc Resistance

Based on the resistance-temperature coefficient of copper of 100 percent conductivity and of aluminum 61 percent conductivity (international annealed copper standard) at 25°C and the formulas:

R₁ = Resistance at 25°C

 R_2 = Resistance at desired temp. T_2

 $T_1 = 25^{\circ}C$

Copper

R₂ = R₁
$$\left[\frac{234.5 + T_2}{234.5 + T_1} \right]$$

Aluminum

$$R_2 = R_1 \left[\frac{228.1 + T_2}{228.1 + T_1} \right]$$

Example:

R dc at 75°C for 4/0 AWG uncoated copper = 0.0509 x 1.193 = .0607 ohms/1000 ft.

Resistance temperature correction factors Copper Conductors

Table 1-4

Ooppo.										
Temp. C	0	1	2	3	4	5	6	7	8	9
0	.904	.908	.911	.915	.919	.923	.927	.931	.934	.938
10	.942	.946	.950	.954	.958	.961	.965	.969	.973	.977
20	.981	.985	.988	.992	.996	1.000	1.004	1.008	1.012	1.015
30	1.019	1.023	1.027	1.031	1.035	1.039	1.042	1.046	1.050	1.054
40	1.058	1.062	1.066	1.069	1.073	1.077	1.081	1.085	1.089	1.092
50	1.096	1.100	1.104	1.108	1.111	1.115	1.119	1.123	1.127	1.131
60	1.135	1.139	1.143	1.146	1.150	1.154	1.158	1.162	1.166	1.170
70	1.173	1.177	1.181	1.185	1.189	1.193	1.197	1.200	1.204	1.208
80	1.212	1.216	1.220	1.224	1.227	1.231	1.235	1.239	1.243	1.247
90	1.250	1.254	1.258	1.262	1.266	1.270	1.274	1.277	1.281	1.285
100	1.289	1.293	1.297	1.300	1.304	1.308	1.312	1.316	1.320	1.324
110	1.328	1.331	1.335	1.339	1.343	1.347	1.351	1.354	1.358	1.362
120	1.366	1.370	1.374	1.378	1.381	1.385	1.389	1.393	1.397	1.400
130	1.405	1.408	1.412	1.416	1.420	1.424	1.428	1.432	1.435	1.439
140	1.443	1.447	1.451	1.455	1.459	1.462	1.466	1.470	1.474	1.478
150	1.482	1.480	1.489	1.493	1.497	1.500	1.505	1.509	1.513	1.516

Aluminum Conductors

Temp. C	0	1	2	3	4	5	6	7	8	9
0	.901	.905	.909	.913	.917	.921	.925	.928	.932	.936
10	.940	.944	.948	.952	.956	.960	.964	.968	.972	.976
20	.980	.984	.988	.992	.996	1.000	1.004	1.008	1.012	1.016
30	1.020	1.024	1.028	1.032	1.036	1.040	1.044	1.048	1.052	1.056
40	1.060	1.064	1.068	1.072	1.076	1.080	1.084	1.088	1.092	1.096
50	1.100	1.104	1.108	1.112	1.116	1.120	1.124	1.128	1.132	1.136
60	1.140	1.144	1.148	1.152	1.156	1.160	1.164	1.168	1.172	1.176
70	1.180	1.184	1.187	1.191	1.195	1.199	1.203	1.207	1.211	1.215
80	1.219	1.223	1.227	1.231	1.235	1.239	1.243	1.246	1.250	1.254
90	1.258	1.262	1.266	1.270	1.274	1.278	1.281	1.285	1.289	1.293
100	1.297	1.301	1.304	1.308	1.311	1.315	1.319	1.324	1.328	1.332
110	1.336	1.340	1.343	1.347	1.351	1.355	1.359	1.362	1.366	1.370
120	1.374	1.378	1.381	1.385	1.389	1.393	1.397	1.401	1.405	1.409
130	1.413	1.417	1.420	1.424	1.428	1.432	1.436	1.440	1.444	1.448
140	1.452	1.456	1.459	1.463	1.467	1.471	1.475	1.479	1.483	1.487
150	1.491	1.495	1.498	1.502	1.506	1.510	1.514	1.518	1.522	1.526

ac/dc Ratios

To determine effective 60-Hertz ac resistance, multiply dc resistance values corrected for proper temperature, by the ac/dc resistance ratio given below. These apply to the following specific conditions.

Use Columns 1 and 2 for:

- (a) Single-conductor non-metallic sheathed cables in air or non-metallic conduit.
- (b) Single-conductor metallic-sheathed cables with sheaths insulated in air or separate non-metallic conduits.
- (c) Multiple-conductor non-metallic sheathed cables in air or non-metallic conduits.

Note: Columns 1 and 2 include skin effect only. For close spacing such as multi-conductor cables or several cables in the same conduit, there will be an additional apparent resistance due to proximity loss. This varies with spacing (insulation thickness) but for most purposes can be neglected without serious error.

Use Column 3 for:

- (a) Multiple-conductor metallic-sheathed cable.
- (b) Multiple-conductor non-metallic sheathed cables in metal conduit.
- (c) Two or more single-conductor non-metallic sheathed cables in same metallic conduit.

ac/dc resistance ratios for copper and aluminum conductors 60 Hertz (65°C)

Table 1 - 5

Conductor Size AWG	Standard	l Conductor		2 Conductor		3 Indings
or kcmil	Copper	Aluminum	Copper	Aluminum	Copper	Aluminum
Up to 3 2 and 1 0	1.000 1.000 1.001	1.000 1.000 1.000	=		1.00 1.01 1.02	1.00 1.00 1.00
00 000 0000	1.001 1.002 1.004	1.001 1.001 1.001	_ 	_ 	1.03 1.04 1.05	1.00 1.01 1.01
250 300 350	1.005 1.006 1.009	1.002 1.003 1.004	_ 	_ 	1.06 1.07 1.08	1.02 1.02 1.03
400 500 600	1.011 1.018 1.025	1.005 1.007 1.010	_ 	_ 	1.10 1.13 1.16	1.04 1.06 1.08
700 750 800	1.034 1.039 1.044	1.013 1.015 1.017	_ 	_ 	1.19 1.21 —	1.11 1.12 1.14
1000 1100 1250 1500	1.067 — 1.102 1.142	1.026 1.035 1.040 1.058	1.010 — 1.018 1.028	1.005 — 1.008 1.012	_ _ _ _	1.19 — 1.27 —
1750 2000 2500	1.185 1.233 1.326	1.079 1.100 1.142	1.038 1.052 1.078	1.016 1.020 1.028	_ _ _	_ _ _

Okonite Cables Section 1

General Conductor Information

ac/dc Ratios

Calculate ampacity at other frequencies as follows:

1) Determine ac/dc ratio at required frequency from Table 1-7 after calculating value of B and K.

By formula:

$$B = \sqrt{\frac{f}{R_{dc}}} \quad \text{and} \quad K = \frac{D_c}{S}$$

where f = frequency, R_{dc} = dc resistance, ohms /1000 ft. Dc = conductor diameter, S = axial spacing of conductors in inches.

2) Derating factor =
$$\sqrt{\frac{\text{ac / dc ratio at 60 Hz}}{\text{ac / dc ratio at f}}}$$

3) Ampacity equals 60 Hertz ampacity multiplied by the derating factor.

Conductor resistance and ampacities at high frequencies

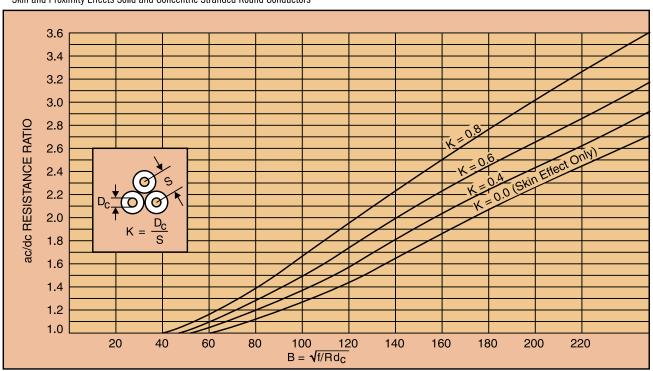
600 Volt Rubber-Neoprene Cables — Minimum triangular spacing in air or nonmetallic conduit

Table 1-6

Conductor Size	Conductor Diameter	Cable Diameter	К	D-C Res. 75°C	400 Hertz B	AC/DC	Ampacity Derating Factor*	800 Hertz B	AC/DC	Ampacity Derating Factor*
AWG or kcmil	Inches	Inches		Stranded Copper						
14 12 10 8 6 4 2 1 1/0 2/0 3/0 4/0	0.073 .092 .116 .146 .184 .232 .292 .332 .373 .418 .470	0.21 .23 .25 .32 .39 .44 .50 .61 .65 .69 .75	0.35 .40 .47 .46 .48 .53 .59 .55 .58 .61 .63	3.14 1.97 1.24 .780 .490 .310 .194 .154 .122 .097 .0767	11.3 14.3 18.0 22.7 28.6 36.0 45.4 51.0 57.4 64.5 72.3 81.4	1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.05 1.08 1.15 1.22 1.33	1.00 1.00 1.00 1.00 1.00 1.00 .98 .98 .96 .93 .90	16.0 20.2 25.4 32.0 40.5 51.0 64.4 72.2 81. 91. 102. 115.	1.00 1.00 1.00 1.00 1.00 1.05 1.12 1.16 1.25 1.40 1.53 1.70	1.00 1.00 1.00 1.00 1.00 0.98 0.94 0.93 0.89 0.84 0.81
250 350 500	.575 .681	.92 1.08	.63 .63 .70	.0515 .0368 .0258	88.1 105	1.40 1.56	.84 .80 .72	125. 148.	1.82 2.05	0.74
750 1000	.813 .998 1.152	1.16 1.38 1.54	.70 .73 .75	.0256 .0172 .0129	125 153 177	1.90 2.30 2.60	.66 .62	177. 216. 249.	2.54 3.06 3.44	0.63 0.57 0.54

^{*}These derating factors do not apply to cables: 1. In metallic sheath, armor or conduit. 2. Adjacent to steel structures

Okonite Cables
Section 1


General Conductor Information

ac/dc Ratios

Copper conductor resistance and ampacities at high frequencies

Skin and Proximity Effects Solid and Concentric Stranded Round Conductors

Table 1-7

Physical & Mechanical Properties

Mechanical & Physical Properties of Conductor Materials (Average Values)

Table 1-8

	COPPER	ALUMINUM
Melting Point°F Melting Point°C	1981 1083	1215 657
Density, lb/cu. in. Tensile Strength, kpsi	0.323 35	0.0977 15
Thermal Conductivity @ 68°F (20°C) Btu/sq. ft./ft./hr./°F	224	135
Electrical Resistivity @ 68°F (20°C) ohm-cir mil/ft	10.37	16.96
Linear Coeficient of Expansion (68-212°F) micro in./in.°F	9.4	13.1
Specific Heat Btu/lb.°F	0.092	0.215

Breaking strength Bare copper and aluminum wire

Table 1-9

	HARD [DRAWN		MEDIUM HARD DRAWN COPPER 3/4 HARD DRAWN ALUMINUM						SOFT ANNEALED COPPER HALF HARD ALUMINUM	
Size AWG	Breaking	rox. g Weight unds	Mi	Breaking Weight in Pounds Min. Avg. Max.					Breaking	orox. g Weight ounds	
	CU	AL	CU	AL	CU	AL	CU	AL	CU	AL	
18 16	85 135	32 54 92	68 106	22 32	72 113	25 38	77 120	28 42	49 78	22 33 57	
14 12 10	213 337 529	144 212	167 262 410	55 87 139	178 279 439	65 103 163	189 297 468	72 113 180	124 197 314	90 143	
9 8 6	661 826 1281	262 324 495	514 644 1010	175 221 351	550 689 1082	206 260 412	586 735 1155	226 286 454	380 480 763	180 228 361	
4 3 2	1970 2439 3003	768 971 1225	1580 1984 2450	545 703 885	1697 2129 2632	640 826 1040	1814 2274 2815	705 910 1145	1213 1530 1929	560 724 912	
1 1/0 2/0 3/0	3687 4518 5518 6722	1542 1950 2460 3100	3024 3730 4598 5677	1120 1410 1780 2240	3254 4020 4964 6166	1315 1660 2100 2640	3484 4310 5330 6590	1450 1825 2305 2900	2432 2984 3762 4745	1150 1451 1831 2305	
4/0	8144	3900	6980	2830	7562	3320	8144	3660	5983	2910	

General Information

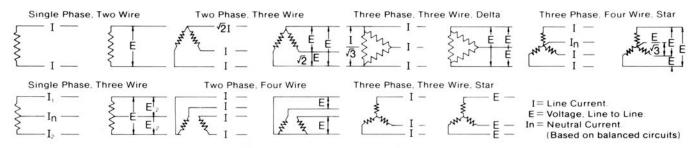
Motor Currents

Full load currents of motors in amperes

Table 2-1

Motor Rating	Dire	ect Current Mot	or	*Single Phase AC Motor				ANE	N TYPE SQUIRF O WOUND ROTO ase AC Motor (4)R	
HP	120V	240V	550V	115V	230V	440V	115V	230V	460V	575V	2300V
1/2	5.4	2.7	_	9.8	4.9	_	4.0	2.0	1.0	0.8	_
3/4	7.6	3.8	_	13.8	6.9	_	4.8	2.4	1.2	1.0	_
1	9.5	4.7	_	16.0	8.0	_	6.4	3.2	1.6	1.3	_
1 1/2	13.2	6.6	_	20.0	10.0	_	9.0	4.5	2.3	1.8	_
2	17.0	8.5	_	24.0	12.0	_	11.2	5.9	3.0	2.4	_
3	25.0	12.2	_	34.0	17.0	_	_	8.3	4.2	3.3	_
5	40.0	20.0	_	56.0	28.0	_	_	13.2	6.6	5.3	_
7 1/2	58.0	29.0	12.2	80.0	40.0	21	_	19.0	9.0	8.0	_
10	76.0	38.0	16.0	100.0	50.0	26	_	24.0	12.0	10.0	_
15	_	55.0	24.0	_		_	_	36.0	18.0	14.0	_
20	_	72.0	31.0	_	_	_	_	47.0	23.0	19.0	_
25	_	89.0	38.0	_	_	_	<u> </u>	59.0	29.0	24.0	_
30	_	106.0	46.0	_	_	_	_	69.0	35.0	28.0	_
40		140.0	61.0	_		_	_	90.0	45.0	36.0	_
50	_	173.0	75.0	_	<u> </u>	_	_	113.0	56.0	45.0	
60	_	206.0	90.0	_	_	_	_	133.0	67.0	53.0	14
75	_	255.0	111.0	_	_	_	_	166.0	83.0	66.0	18
100		341.0	148.0	_	_	_	_	218.0	109.0	87.0	23
125	_	425.0	185.0	_	_	_	_	270.0	135.0	108.0	28
150	_	526.0	222.0	_	_	_	_	312.0	156.0	125.0	32
200	_	675.0	294.0			<u> </u>	_	416.0	208.0	167.0	43

NOTE: In selection of cables for motor leads the regulations of the National Electric Code should be followed. The values do not take into account voltage drop and when motors are connected with long leads the voltage drop should be checked.


*The values of motor full load currents are for motors running at usual speeds and motors with normal torque characteristics. Motors built for especially low speeds or high torques may require more running current.

General Information

Motor Currents

System Diagrams

Full load currents of motors in amperes

Table 2-2

Motor Rating			TYPE SQUIR WOUND RO				S	/NCHRON(OUS TYPE (+ Unity Po	wer Factor)	
Ivaulig		Three Phase AC Motor				Two	Phase AC	Motor (4 W	/ire)		Three Pha	se AC Moto	or
HP	115V	230V	460V	575V	2300V	220V	440V	550V	2300V	230V	460V	575V	2300V
1/2	4.0	2.0	1.0	0.8	_	_	_	_	_	_	_	_	_
3/4	5.6	2.8	1.4	1.1	_	_	_	_	_	_		_	_
1	7.2	3.6	1.8	1.4	_	_	_	_	_	l —	_	_	_
1 1/2	10.4	5.2	2.6	2.1	_		_	_	_	l —	_	_	_
2	13.6	6.8	3.4	2.7	_	_	_	_	_	l —	_	_	_
3	_	9.6	4.8	3.9	_	_	_	_	_	_	_	_	_
5	_	15.2	7.6	6.1	_	_	_	_	_	l —	_	_	_
7 1/2	_	22.0	11.0	9.0	_		_	_	_	l —	_	_	_
10	_	28.0	14.0	11.0	_	_	_	_	_	_	_	_	_
15	_	42.0	21.0	17.0	_		_	_	_	l —	_	_	_
20	_	54.0	27.0	22.0	_	_	_	_	_	_	_	_	_
25	_	68.0	34.0	27.0	_	47	24	19	_	53	26	21	_
30	_	80.0	40.0	32.0	_	56	29	23	_	63	32	26	_
40	_	104.0	52.0	41.0	_	75	37	31	_	83	41	33	_
50	_	130.0	65.0	52.0	_	94	47	38	_	104	52	42	_
60		154.0	77.0	62.0	16	111	56	44	11	123	61	49	12
75		192.0	96.0	77.0	20	140	70	57	13	155	78	62	15
100		248.0	124.0	99.0	26	182	93	74	17	202	101	81	20
125	<u> </u>	312.0	156.0	125.0	31	228	114	93	22	253	126	101	25
150	_	360.0	180.0	144.0	37	_	137	110	26	302	151	121	30
200	_	480.0	240.0	192.0	49	_	182	145	35	400	201	161	40

NOTE: In selection of cables for motor leads the regulations of the National Electric Code should be followed. The values do not take into account voltage drop and when motors are connected with long leads the voltage drop should be checked.

† For 90 and 80% power factor the listed currents should be multiplied by 1.1 and 1.25 respectively.

General Information

Electrical Formulas

Voltage Rating

The selection of the cable insulation level to be used in a particular installation shall be made on the basis of the applicable phase to phase voltage and the general system category as outlined below:

100 Percent Level - Cables in this category may be applied where system is provided with relay protection such that ground faults will be cleared as rapidly as possible, but in any case within 1 minute. While these cables are applicable to the great majority of cable installations which are on grounded systems, they may be used also on other systems for which the application of cables is acceptable **provided the above clearing requirements are met in completely de-energizing the faulted section.

133 Percent Level - This insulation level corresponds to that formerly designated for ungrounded systems. Cables in this category may be applied in those situations

where the clearing time requirements of the 100 percent level category cannot be met, and yet there is adequate assurance that the faulted section will be de-energized in a time not exceeding 1 hour. Also they may be used when additional insulation strength over the 100 percent level category is desirable.

173 Percent Level - Cables in this category should be applied on systems where the time required to de-energize a grounded section is indefinite. Their use is recommended also for resonant grounded systems. Consult the manufacturer for insulation thickness.

**In common with other electrical equipment, the use of cables is not recommended on systems where the ratio of the zero to positive phase reactance of the system at the point of cable application lies between -1 and -40 since excessively high voltages may be encountered in the case of ground faults.

Electrical formulas for determining amperes, horsepower, kilowatts and kilovolt-amperes

Table 2-3

DESIRED		ALTERNATING CURRENT		DIRECT	
DATA	Single-Phase	Two-Phase* Four-Wire	Three-Phase	CURRENT	
Amperes when kva is shown	kva x 1000	kva x 1000	kva x 1000	kva x 1000	
	E	2 x E	1.73 x E	E	
Amperes when kilowatts are shown	kw x 1000	kw x 1000	kw x 1000	<u>kw x 1000</u>	
	E x pf	2 x E x pf	1.73 x E x pf	E	
Amperes when horsepower is shown	hp x 746	hp x 746	hp x 746	hp x 746	
	E x %Eff x pf	2 x E x %Eff x pf	1.73 x E x %Eff x pf	E x %Eff	
Kilovolt-Amperes	I x E	1 x E x 2	1 x E x 1.73	I x E	
	1000	1000	1000	1000	
Kilowatts	1 x E x pf	1 x E x 2 x pf	I x E x 1.73 x pf	I x E	
	1000	1000	1000	1000	
Horsepower	1 x E x %Eff x pf	1 x E x 2 x %Eff x pf	1 x E x 1.73 x %Eff x pf	1 x E x %Eff	
	746	746	746	746	

^{*}In three-wire, two phase balanced circuits, the current in the common conductor is 1.41 times that in either of the other conductors.

 $E = volts \varnothing - \varnothing; \ I = amperes; \% \ Eff = percent \ efficiency \ in \ decimals; \ pf = power factor \ in \ decimals;$

kva = kilovolt-ampere; hp = horsepower; kw = kilowatts

Voltage Regulation

Voltage regulation is often the limiting factor in the choice of either conductor or type of insulation. While the heat loss in the cable determines the maximum current it can safely carry without excessive deterioration, many circuits will be limited to currents lower than this in order to keep the voltage drop within permissible values. In this connection it should be remembered that the high voltage circuit should be carried as far as possible so that the secondary runs, where most of the voltage drop occurs, will be small.

The voltage drop of a feeder may be calculated from the following formulae:

$$V = \frac{100 (V_s - V_L)}{V_L}$$

V = Voltage regulation in percent

V_I = Voltage across load

V_s = Voltage at source

$$V_S = \sqrt{(V_L \cos \theta + RI)^2 + (V_L \sin \theta + XI)^2}$$

q = is the angle by which the load current lags the voltage across the load

Cos θ = Power factor of load

R = Total a-c resistance of feeder

X = Total reactance of feeder

I = Load current

Approximate formula for voltage drop:

$$(V_S - V_I) = RI \cos \theta + XI \sin \theta$$

This above formula is satisfactory where the power factor angle is nearly the same as the impedance angle. It is exact when they are equal.

That is:
$$\tan \theta = \frac{X}{R}$$

Above values apply directly for single phase lines when resistance and reactance are loop values and voltage is voltage between lines.

For 3-phase circuits, use voltage to neutral and resistance and reactance of each conductor to neutral. This gives voltage drop to neutral. To obtain voltage drop line-to-line, multiply voltage drop by $\sqrt{3}$. (The percent voltage drop is of course the same between conductors as from conductor to ground and should not be multiplied by $\sqrt{3}$.)

Example: 3 single coated copper conductors 600 volt cables in non-metallic conduit.

Size conductor =4/0, Awg Copper .080 insulation, .045 jacket. O.D. = .810" Voltage =
$$V_s$$
 = 440 volts 3 phase Current = I= 250 amperes Power Factor = $\cos \theta$ = 0.8

Length = 750 ft.

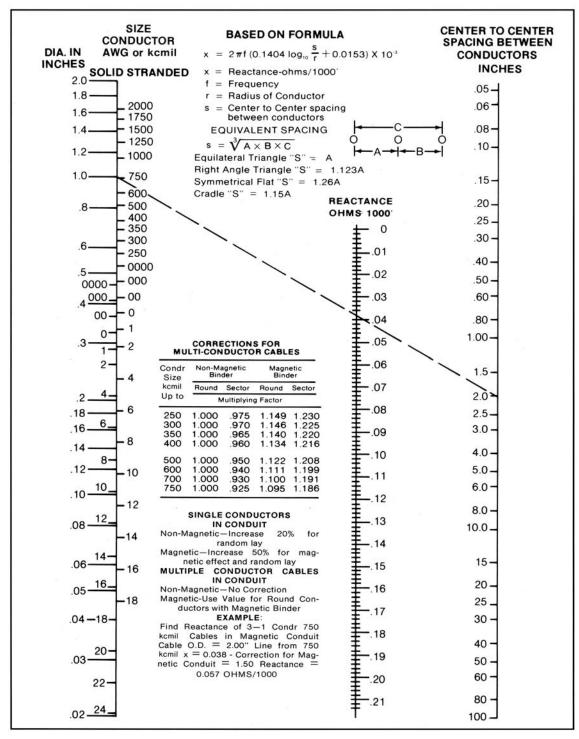
Approximate Formula:

```
Voltage drop = line to neutral 
= RI \cos \theta + XI \sin \theta = 0.047 X 250 X 0.8 + 0.028 X 250 X 0.6 
= 9.4 + 4.2 = 13.6 
Line-to-line voltage drop = 13.6 \sqrt{3} = 23.5 volts
```

Conductor Reactance

The table on page 13 shows a nomogram for determining the reactance of any solid or concentric stranded conductor. This covers spacings encountered for conduit wiring as well as for open wire circuits. Various modifications necessary for use under special conditions are covered in notes on the nomogram. The reactances shown are for 60-Hertz operation.

Where regulation is an important consideration several factors should be kept in mind in order to obtain the best operating conditions.


Open wire lines have a high reactance. This may be improved by using parallel circuits but is much further reduced by using insulated cable. Three conductors in the same conduit have a lower reactance than conductors in separate conduits.

Single conductors should not be installed in individual magnetic conduit because of the excessive reactance.

Three conductors in magnetic conduit will have a somewhat higher reactance than cables in non-magnetic conduit.

Reactance of conductors at 60 Hz (Series inductive reactance to neutral)

Table 3-1

Short Circuit Currents

With the ever-increasing kva capacity of power systems, the possible short circuit currents are becoming so high that it is frequently necessary to consider the effect of these short circuits on the heating of the cables. The conductor size must be large enough to carry the short circuit current for a sufficient length of time to permit the circuit breakers to open before the conductor is heated to the point where it damages the insulation.

The chart at right shows the maximum currents to which various size copper conductors can be subjected for various times , up to 100 cycles*, without injuring the insulation. It is based on a 90°C conductor operating temperature. The maximum current for short circuit ratings for 75°C conductor temperatures and for other than 250°C may be obtained by multiplying the value obtained for $T_1 = 90$ °C and $T_2 = 250$ °C from chart by appropriate correction factor for other values of T_1 and T_2 .

Curves Based On Formula for Copper

$$\left[\frac{I}{A}\right]^{2}t = 0.0297 log \left[\frac{T_{2} + 234}{T_{1} + 234}\right]$$

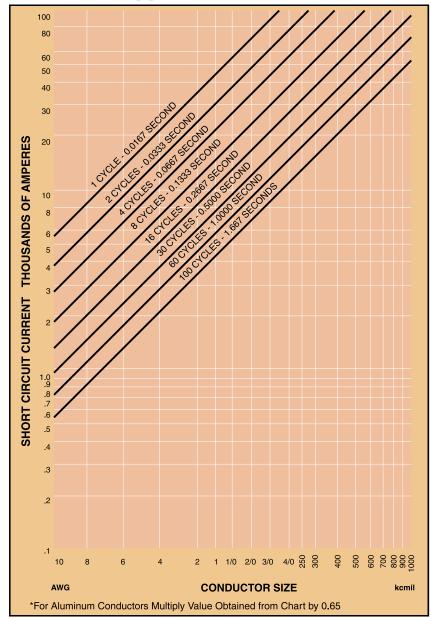
Where

$$\begin{split} & I = Short \ Circuit \ Current \ - \ Amperes \\ & A = Conductor \ Area \ - \ Circular \ mils \\ & t = Time \ of \ Short \ Circuit \ - \ Seconds \\ & T_1 = Operating \ Temperature \ - \ 90^{\circ}C \\ & T_2 = Maximum \ Short \ Circuit \\ & Temperature \ - \ 250^{\circ}C \end{split}$$

Alternately,

$$I = A \left\lceil \frac{0.0297 log \left(\frac{T_2 + 234}{T_1 + 234}\right)}{t} \right\rceil^{1/2}$$

Time increases by the square of the ratio of the conductor size.


$$t_2 = t_1 \left(\frac{A_2}{A_1}\right)^2$$

*For intermediate and long times (>100 cycles) consult IEEE Std 242 - Buff Book.

Allowable short circuit currents for insulated copper conductors*

Table 4-1

	OUS SHO		ECTION FA T TEMPER pp. (T ₂)	
	175°C	200°C	225°C	250°C
$T_1 = 75^{\circ}C$.84	.92	.99	1.06
T. = 90°C	.76	.85	.93	1.00

Section 4

Short Circuit Currents

Shield short circuit current formula

For short-circuit shield ampacity with a known cable shield area (or an area that can be calculated from formulas given aside), the following simplified formula may be used.

 $I = \frac{A}{\sqrt{\frac{N}{K}}} \qquad \qquad \begin{aligned} Where & I = Amperes \\ A = Shield Area in CM \\ N = Number of Cycles \\ T_1 = Initial Temp. 65°C \end{aligned}$

K = See Table Below

T,MAX	VALUES OF K						
С	Cu	Al *	Pb				
150	0.193	0.083	0.0063				
200	0.288	0.123	0.0094				
250	0.372	0.159	0.0121				
350	0.517	0.221	_				
* Aluminum with	n 61% conductivi	ity					

NOTE: Use 200 for thermoplastic and 350 for thermosetting jackets.

For Overlapped Tape (1)	$A = 4bd_m \times \sqrt{\frac{W}{2(W-L)}}$					
For Tubular Sheath	$A = 4bd_m$					
For Wire Braid	$A = Nd_s^2$					
For Spaced Tape	A = 1.273 Wb					
For Flat Straps	A = 1.273 WNb					
Where: b = shield/strap thickness, n d _m = mean diameter, mils d _s = wire diameter, mils	nils W = tape/strap width, mils A = area in CM L = lap of tape, mils					

(1) Substituting various overlap values gives the following:

N = number of wires/straps

 OVERLAP
 AREA

 1/2 W (50%)
 4bd_m

 1/4 W (25%)
 3.27 bd_m

 1/5 W (20%)
 3.16bd_m

 1/8 W (12.5%)
 3.02bd_m

Permissible short circuit currents for copper shielding tape* amperes

Table 4-2

Shield	Effective		Short	Circuit Time i	n Number of	Cycles (60 pe	er sec.)	
Diam Inches	Shield Area Circular Mils	1	2	4	8	16	30	60
1/2	7,484	4,016	2,840	2,008	1,420	1,004	733	518
3/4	11,264	6,044	4,274	3,022	2,137	1,511	1,104	780
1	15,044	8,073	5,708	4,036	2,854	2,018	1,474	1,042
1 1/4	18,824	10,101	7,143	5,051	3,571	2,525	1,844	1,304
1 1/2	22,604	12,130	8,577	6,065	4,289	3,032	2,215	1,566
1 3/4	26,384	14,158	10,011	7,079	5,006	3,540	2,585	1,828
2	30,164	16,187	11,446	8,093	5,723	4,047	2,955	2,090
2 1/4	33,944	18,215	12,880	9,107	6,440	4,554	3,.326	2,352
2 1/2	37,724	20,243	14,314	10,122	7,157	5,061	3,696	2,613
2 3/4	41,504	22,272	15,749	11,136	7,874	5,568	4,066	2,875
3	45,284	24,300	17,183	12,150	8,591	6,075	4,437	3,137

^{*}Values are derived from formula pg. 14 and $T_2 = 200$ °C, $T_1 = 65$ °C, 5 mil copper tape with 12.5% overlap.

Section 5

Shielding

Shielding should be considered for non-metallic covered cables operating at a circuit voltage above 2000 volts for single conductor cables and 5000 volts for assembled conductors with a common overall jacket.

Definition of shielding

Shielding of an electric power cable is the practice of confining the electric field of the cable to the insulation of the conductor or conductors. It is accomplished by means of strand and insulation shields.

Functions of Shielding

A strand shield is employed to preclude excessive voltage stress on voids between conductor and insulation. To be effective, it must adhere to or remain in intimate contact with the insulation under all conditions.

An insulation shield has a number of functions:

- (a) To confine the electric field within the cable.
- (b) To obtain symmetrical radial distribution of voltage stress within the dielectric, thereby minimizing the possibility of surface discharges by precluding excessive tangential and longitudinal stresses.
- (c) To protect cable connected to overhead lines or otherwise subject to induced potentials.
- (d) To limit radio interference.
- (e) To reduce the hazard of shock. If not grounded, the hazard of shock may be increased.
- (f) To provide a low impedance path to carry charging current to ground.

Use of Insulation Shielding

The use of shielding involves consideration of installation and operating conditions. Definite rules cannot be established on a practical basis for all cases, but the following features should be considered as a working basis for the use of shielding.

Where there is no metallic covering or shield over the insulation, the electric field will be partly in the insulation and partly in whatever lies between the insulation and ground. The external field, if sufficiently intense in air, will generate surface discharge and convert atmospheric oxygen into ozone which may be destructive to rubber insulations and to protective jackets. If the surface of the cable is separated from ground by a thin layer of air and the air gap is subjected to a voltage stress which exceeds the dielectric strength of air, a discharge will occur, causing ozone formation.

The ground may be either a metallic conduit, a damp nonmetallic conduit or a metallic binding tape or rings on an aerial cable, a loose metallic sheath, etc. Likewise, damage to non-shielded cable may result when the surface of the cable is moist, or covered with soot, soapy grease or other conducting film and the external field is partly confined by such conducting film so that the charging current is carried by the film to some spot where it can discharge to ground. The resultant intensity of discharge may be sufficient to cause burning of the insulation or jacket.

Where nonshielded nonmetallic jacketed cables are used in underground ducts containing several circuits which must be worked on independently, the external field if sufficiently intense can cause shocks to those who handle or contact energized cable. In cases of this kind, it may be advisable to use shielded cable. Shielding used to reduce hazards of shock should have a resistance low enough to operate protective equipment in case of fault. In some cases, the efficiency of protective equipment may require proper size ground wires as a supplement to shielding. The same considerations apply to exposed installations where cables may be handled by personnel who may not be acquainted with the hazards involved.

Operating voltage limits kV, above which insulation shielding is required

Table 5-1

60 HERTZ POWER CABLE - 100 AND 133% INSULATION LEVEL	
1. Single and multiple conductor cables with metallic sheath or armor	
Multiple conductor cables with common overall discharge resisting jacket 2.4 kV	
3. Single conductor cables	

Grounding Shielded Cable

When installing shielded cable, metallic shielding must be solidly grounded. Where conductors are individually shielded, each must have its shielding grounded and the shielding of each conductor should be carried across every joint to assure positive continuity of a shielding from one end of the cable to the other. Where grounding conductors are part of the cable assembly, they must be connected with the shielding at both ends of the cable.

For safe and effective operation, the shielding should be grounded at each end of the cable and at each splice. For short lengths or where special bonding arrangements are used, grounding at one point only may be satisfactory.

All grounding connections should be made to the cable shield in such a way as to provide a permanent low resistance bond. Soldering the connection to the cable shield in usually preferable to a mechanical clamp, as there is less danger of a poor connection, loosening, or injury to the cable. The area of contact should be ample to prevent the current from heating the connection and melting the solder.

For additional security, a mechanical device, such as a nut and bolt, may be used to fasten the ends of the connection together. This combination of a soldered and mechanical connection provides permanent low resistance which will maintain contact even though the solder melts.

The wire or strap used to connect the cable shield ground connection to the permanent ground must be of ample size to carry fault currents.

Effect of Grounding Metallic Shield

The metallic coverings of cables must be grounded to provide satisfactory operating and safety conditions. As the method of grounding may affect the current carrying capacity, formulas for calculating losses and correcting the current carrying capacity for those losses may be found on pages 19 and 20.

Installations of shielded single conductor cables must be studied to determine the best method of grounding. This is necessary as voltage is induced in the shield of a single conductor cable carrying alternating current due to the mutual induction between its shield and any other conductors in its vicinity. This induced voltage can result in two conditions:

1. Metal shields bonded or grounded at more than one point have circulating currents flowing in them, the magnitude of which depends on the mutual inductance to the other cables, the current in these conductors, and the resistance of the shield. This circulating current does not depend on the length of the cables nor the number of bonds, providing there are bonds at each end. The only effect of this circulating current is to heat the shield and thereby reduce the effec-

tive current carrying capacity of the cable. If the shield loss exceeds 5 percent or the copper loss, the current carrying capacity should be reduced.

2. Shields bonded or grounded at only one point will have a voltage built up along the shield. The magnitude depends on the mutual inductance to other cables, the current in all the conductors, and the distance to the grounded point. This voltage may cause discharge or create an unsafe condition for workmen. The usual safe potential is about 25 volts for cables having nonmetallic covering over the shield.

Multi-Grounded Shields

If operating conditions permit, it is desirable to bond and ground cable shields at more than one point, to improve the reliability and safety of the circuit. This decreases the reactance to fault currents and increases the human safety factor

Some general recommendations may be made, but it must be remembered that variations in insulation thickness, conductivity of sheath, spacing of conductors, and the current being carried all affect these recommendations. It is impossible to cover all these variations.

The following single conductor cables carrying alternating currents may, in general, be operated with multisheath grounds.

1. Shielded cables up to and including 250 kcmil with phases in separate ducts.

Cables in ac circuits should not be installed with each phase in separate magnetic conduits under any circumstances due to the high inductance under such conditions. Cables in a-c circuits should not be installed with each phase in separate metallic non-magnetic conduit when their size exceeds 4/0 unless the conduit is insulated to prevent circulating currents.

- 2. Shielded cables installed with all three phases in the same duct.
- 3. Cables of any size may be installed with multi-shield grounds, provided allowance is made for heating due to current induced in the shield. Cables carrying direct current may always be solidly grounded at more than one point, except where insulating joints are required to isolate earth currents or to permit cathodic protection.

Shields Grounded at One Point

Shields of single conductor cable carrying alternating current will have a potential buildup if grounded at only one point. Historically, a maximum shield voltage limit has been 25 volts. However, with the introduction of more insulating jackets, utilities have allowed higher voltages to be used. For more information, see ANSI/IEEE Std 575-1988 "Guide for the Application of Sheath-Bonding Methods for Single-conductor Cables and the Calculation of Induced voltages and Currents in Cable Sheaths".

Table 5-2 illustrates an example of the maximum lengths which should be allowed between insulating joints in order to keep the shield potential below the historical maximum safe value of 25 volts for specific cables, installation configurations and current loads.

Maximum lengths for single conductor cables with shields insulated at joints and terminals and grounded at end of each section only.

Table 5-2

Size Conductor	One Phase per duct (ft)	Three Phases per duct (ft)
1/0	1410	5105
4/0	970	3540
350	785	2740
500	665	2325
750	560	1875
1,000	500	1680
2,000	405	_

Based on 15 kV cables operating at full load, 100% load factor and the equations given in Table 5-3 with ampacities given in Table 6-5 for 1/C per duct and ampacities in Table 6-10 for 3 x 1/C cables per duct.

The lengths given in Table 5-2 apply to cables operating at 60 Hz a-c voltage. Many conditions will permit longer lengths between insulating joints, as for example, where cables are operating at less than full load.

The lengths given are from the grounded point to the insulating joint. If the mid-point of the section is grounded, the total length between insulating joints may be twice the length given.

Induced Shield Voltages, Currents and Losses

Table 5-3 gives formulas for calculating the induced voltage and shield loss for single conductor cables. These formulas neglect proximity loss, but are accurate enough for practical purposes.

It is assumed that the cables are carrying balanced currents.

For cables installed three per conduit use arrangement II. The spacing, S, in this case will be equal to the outside diameter of the cable increased by 20 percent to allow for random spacing in the conduit.

Cross-Bonding

Another method to reduce shield currents and voltages is to employ cross bonding of shields at specific locations. There are numerous arrangements such as end-point, mid-point, cross-bonded without transposition, cross-bonded with transposition, sectionalized cross-bonding, etc. Refer to ANSI/IEEE Std 575 for in-depth details.

Shielding

Formulas for calculating shield voltages — currents and losses for single-conductor cables

Table 5-3

						Table 5-0
Cable Arrangement Number	I One phase $ \leftarrow S \rightarrow $	II Equilateral	III Rectangular → A	IV Flat $ \leftarrow S \rightarrow \leftarrow S \rightarrow $	Two circuit B C	VI Two circuit → A B C
and Diagram	BA	(B) (C) ← S →	<u>↓</u> B © ← s →	A B C	$ \begin{array}{c c} S & \leftarrow S \rightarrow \leftarrow S \rightarrow \\ \hline A & B & C \end{array} $	$\begin{array}{c c} S & \leftarrow S \rightarrow \leftarrow S \rightarrow \\ \hline \downarrow C & B & A \end{array}$
INDU	CED SHIELD VOLT	AGE — SHIELDS OF	PEN CIRCUITED		VOLTS TO NEUTRAL P BY 10-6 TO OBTAIN VOL	
CABLE — A CABLE — C	IX _M	ΙΧ _Μ	$\frac{I}{2}\sqrt{3Y^2 + (X_M - \frac{A}{2})^2}$	$\frac{1}{2}\sqrt{3Y^2 + (X_M - A)^2}$	$\frac{I}{2}\sqrt{3Y^2 + (X_M - \frac{B}{2})^2}$	$\frac{I}{2}\sqrt{3Y^2 + (X_M - \frac{B}{2})^2}$
CABLE — B	ΙΧ _Μ	ΙΧ _Μ	IX _M	IX _M	$I(X_M + \frac{A}{2})$	$I(X_M + \frac{A}{2})$
	SHIELD LOSS —	SHIELDS SOLIDLY I	BONDED		MICRO WATTS PER FT. BY 10 ⁻⁶ TO OBTAIN WAT	TS PER FT.)
CABLE — A CABLE — B	$I^{2}R_{s}\frac{X_{M^{2}}}{R_{s}^{2}+X_{M^{2}}}$	$(I^2R_S)\frac{X_{M^2}}{R_S^2 + X_{M^2}}$		$I^{2}R_{S}\left[\frac{(P^{2}+3Q^{2})\pm}{4(P^{2}+}\right]$		
Total loss	$\begin{split} & I^{2}R_{S}\frac{X_{M}^{2}}{R_{S}^{2}+X_{M}^{2}} \\ & 2I^{2}R_{S}\frac{X_{M}^{2}}{R_{S}^{2}+X_{M}^{2}} \end{split}$	$(I^{2}R_{s})\frac{X_{M^{2}}}{R_{s}^{2}+X_{M^{2}}}$ $(3I^{2}R_{s})\frac{X_{M^{2}}}{R_{s}^{2}+X_{M^{2}}}$		$\frac{I^2R_S}{3I^2R_S} \left[\frac{P^2}{2(P^2+1)^2} \right]$		
$P = \frac{R_s}{Y}$	Where:	Y=	$X_M + \frac{A}{2}$	X _M + A	$X_M + A + \frac{B}{2}$	$X_M + A - \frac{B}{2}$
$Q = \frac{R_s}{7}$		Z=	X _M - A/6	$X_M - \frac{A}{3}$	$X_{M} + \frac{A}{3} - \frac{B}{6}$	$X_{M} + \frac{A}{3} - \frac{B}{6}$

To facilitate calculating the shield resistance, and reactance, the following formulas may be used:

$$X_{m} = 2\pi \text{ f } (0.1404 \text{ log}_{10} \frac{S}{r_{_{m}}}) \text{ micro-ohms per ft.}$$

 $A = 2\pi f$ (0.1404 log_{10} 2) micro-ohms per ft.

 $B = 2\pi f$ (0.1404 log₁₀ 5) micro-ohms per ft.

$$R_S = \frac{\rho}{8r_m t}$$
 micro-ohms per ft.

R_S = resistance of shield (micro-ohms per ft.)

t = thickness of metal tapes or sheath used for shielding (inches)

f = frequency (60 Hertz)

S = spacing between center of cables (inches)

r_m = mean radius of shield (inches)

I = conductor current (amperes)

 $\rho = \text{apparent resistivity of shield in ohms-cir mil/ft.} \\ \text{at operating temperature (assumed 50°C).} \\ \text{This includes allowance for spiraling of tapes or wires.} \\$

For 60 Hertz

$$X_M = 52.92 \log_{10} \frac{S}{r_m}$$
 micro-ohms per ft.

A = 15.93 micro-ohms per ft.

B = 36.99 micro-ohms per ft.

Effective Values of ρ

Overlapped Copper Tape 30 ohms-cir mil/ft.
Overlapped Bronze Tape 90-10 47 ohms-cir mil/ft.
Overlapped Copper Alloy Tape C19400 . 52 ohms-cir mil/ft.
Overlapped Cupro-Nickel Tape 80-20 . 350 ohms-cir mil/ft.
Lead Sheath
Smooth Aluminum Sheath 20 ohms-cir mil/ft.
Corrugated, Welded Bronze Sheath 27 ohms-cir mil/ft.
Corrugated, Welded Aluminum Sheath . 30 ohms-cir mil/ft.
Aluminum Interlock Armor 40 ohms-cir mil/ft.
Galv-Steel Armor Wire 85 ohms-cir mil/ft.
Galv-Steel Interlock Armor 70 ohms-cir mil/ft.
Stainless Steel SS304 421 ohms-cir mil/ft.

Example Problems

Permissible Ampacities With Shield Losses

The permissible current carrying capacities of cables may be calculated taking into account the shield loss, thus allowing operation with shields solidly bonded and grounded at more than one point.

An approximate correction factor which is on the conservative side and is close enough for most purposes may be obtained by correcting the current taken from the proper current carrying capacity table by:

Correction factor =
$$\sqrt{\frac{R}{R_a}}$$

Where $R_a = \frac{\text{shield loss } + \text{ I}^2 \text{ R}}{\text{I}^2}$

I = conductor current (amperes)

R = effective a-c resistance of the conductor including skin and proximity effect (ohms per ft.)

Example of Sheath Voltage, Currents and Losses

Situation: 3-1/C, 1000 kcmil 15kV cables with a 5 mil copper tape shielding .110" jacket in a flat duct arrangement, spacing 7.5 inches. For 3-1/C cables in ducts at 75% L.F., I = 890 amp. Cable OD = 2.180

$$r_m = \frac{(2.180 - .220 - .005)}{2} = .978$$

$$X_{m} = 52.92 \log \frac{7.5}{.978} = 46.82 \text{ micro-ohms/ft.}$$

A = 15.93 micro ohms/ft.

$$Y = X_m + A = 46.82 + 15.93 = 62.75$$
 micro-ohms/ft.

$$Z = X_m - \frac{A}{3} = 46.82 - 5.31 = 41.51$$
 micro-ohms/ft.

$$R_s = \frac{\rho}{8r_m t} = \frac{30}{8(.978)(.005)} = 767 \text{ micro-ohms/ft.}$$

$$P = \frac{R_s}{Y} = \frac{767}{62.75} = 12.22 \ Q = \frac{R_s}{Z} = \frac{767}{41.51} = 18.48$$

The Induced Shield Voltage (V):

Cables A or C:

$$V = \frac{1}{2}\sqrt{3Y_2 + (X_m - A)^2} = \frac{1}{2}\sqrt{3(62.75)^2 + (30.89)^2}$$

 $V = I \times 56.5$ micro volts per ft.

 $V = 890 \times 56.5 \times 10^{-6} = .050 \text{ volts pr ft.}$

Maximum ungrnd length = $\frac{25 \text{ V}}{050 \text{ V/ft}}$ = 500 ft.

Cable B:

 $V = I \times X_m = 890 \times 46.82 \times 10^{-6} = .0417 \text{ volts per ft.}$

Shield Loss (P):

Cables A or C

$$P_{s} = I^{2} R_{s} \left[\frac{(P^{2} + 3 Q^{2}) \pm 2 \sqrt{3} (P - Q) + 4}{4 (P^{2} + 1) (Q^{2} + 1)} \right] \times 10^{-6}$$

$$P_s \!\!=\!\! I^2 R_s \! \left\lceil \frac{(12.22)^2 \ + \ 3 \ (18.48)^2 \ \pm \ 2 \ \sqrt{3} \ (12.22 \ - \ 18.48) \ + \ 4}{4 \ \left\lceil (12.22)^2 \ + \ 1 \right\rceil \ \left\lceil (18.48)^2 \ + \ 1 \right\rceil} \right\rceil \! 10^{-6}$$

 $P_s = (890)^2 \times 767 \times .00582 \times 10^{-6} = 3.536$ watts per ft.

$$P_s = I^2 R_s \left[\frac{1}{Q^2 + 1} \right] \frac{(890)^2 767}{(18.48)^2 + 1} \times 10^{-6}$$

 $P_s = 1.77$ watts per ft.

Total Shield Losses:

$$P_s = 3I^2 R_s \left[\frac{P^2 + Q^2 + 2}{2(P^2 + 1)(Q^2 + 1)} \right] x \cdot 10^{-6}$$

$$P_s = 3I^2 Rs \left[\frac{(12.22)^2 + (18.48)^2 + 2}{2(12.22^2 + 1)(18.48^2 + 1)} \right] x \cdot 10^{-6}$$

 $P_s = 3(890)^2 \times 767 \times .00478 \times 10^{-6} = 8.72$ watts per ft.

Calculation of Permissible Ampacity

when Shield Losses are present. R = Rdc @ 25C x Temp. Corr. x AC/DC Ratio

 $R = 11.1 \times 10^{-6} \times 1.25 \times 1.067$

 $R@90C = 14.8 \times 10^{-6}$ ohms per ft.

$$R_a = \frac{Shield\ loss\ +\ I^2R}{I^2} = \frac{3.536\ +\ (890^2\ x\ 14.8\ x\ 10^{-6})}{(890)^2}$$

 $R_a = 19.26 \times 10^{-6}$ ohms per ft.

Correction Factor
$$\sqrt{\frac{R}{R_a}} = \sqrt{\frac{14.8 \times 10^{-6}}{19.26 \times 10^{-6}}} = .877$$

I = (890) (.877) = 780 amp

Okonite Cables Section 6

Ampacity Tables

The ampacity tables in this bulletin cover the installation conditions most commonly encountered. The actual current carrying capacities tables are derived from AIEE-IPCEA "Power-Cable Ampacities", joint publication S-135-1 and P-46-426 which includes more complete tables covering additional earth resistivities and load factors.

The following tables relate to insulated cables in underground ducts, in free air, in conduit in air, and directly buried in earth. The values are based on 90°C and 105°C conductor temperatures and an ambient temperature of 20°C for all cables in underground duct or directly buried in the ground and 40°C for all cables in air.

Ampacity values are based on a 100% load factor. By definition the load factor is the ratio of the average load over a designated period of time to the peak load occurring in that period. For variable continuous loading the base period is 24 hours. These apply for cables in conventional underground duct installations since there is a time lag between the temperature rise of the cable and the temperature rise of the duct structure and surrounding earth. This heat-time-lag characteristic permits assigning higher current ratings for cables in ducts which do not carry full load continuously. For in-air installations 100% load factor is used. These ratings are used to any load factor due to the relatively low thermal capacity of the surrounding air.

Emergency Overloads

For 5 to 46kV rated cable, operations at the emergency overload temperature rated 130°C for insulations rated 90°C continuous and 140°C for insulations rated 105°C continuous, shall not exceed 1500 hours cumulative during the lifetime of the cable. Operation at any temperature above the maximum rated conductor normal operating temperature shall be included in the 1500 hours.

Lower temperatures for emergency overload conditions may be required because of the type of material used in the cable, joints and terminations or because of cable environ-

Correction Factors For Various Ambient Air Temperatures

Table 6 - 1

Table 0 - 1										
	AM	BIENT AIR	TEMPERA	TURE						
		30°C	35°C	40°C	45°C	50°C				
	75 85	0.97 1.06	0.92 1.01	0.86 0.96	0.79 0.90	0.72 0.84				
	90	1.10	1.05	1.00	0.95	0.89				
Conductor	100	1.17	1.12	1.08	1.03	0.98				
Temperature in °C	105	1.20	1.16	1.11	1.07	1.03				
111 0	110 125	1.23 1.31	1.19 1.27	1.15 1.24	1.11 1.20	1.06 1.16				
	130 140	1.33 1.38	1.30 1.35	1.27 1.32	1.23 1.28	1.19 1.25				

mental conditions. See appropriate ICEA Standard or consult manufacturer.

Temperature Correction Factors

To determine ampacities for ambient temperatures and conductor temperatures other than those indicated on the individual tables, multiply table values by the correction factors shown in Table 6-1 or Table 6-2.

Correction Factors For Various Ambient Earth Temperatures

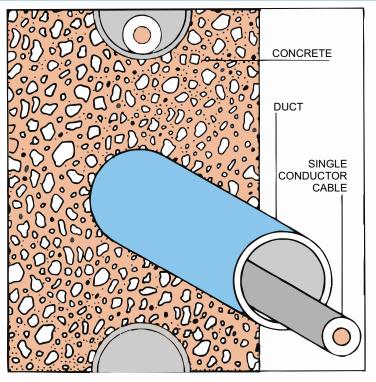
Table 6 - 2

	AMB	IENT EART	H TEMPER	RATURE		
		10°C	15°C	20°C	25°C	30°C
	75 85	0.99 1.04	0.95 1.02	0.91 0.97	0.87 0.93	0.82 0.89
	90	1.07	1.04	1.00	0.96	0.93
Conductor	100	1.12	1.09	1.05	1.02	0.98
Temperature in °C	105	1.14	1.11	1.08	1.05	1.01
III C	110	1.16	1.13	1.10	1.07	1.04
	125	1.22	1.19	1.16	1.14	1.11
	130	1.24	1.21	1.18	1.16	1.13
	140	1.27	1.24	1.22	1.19	1.17

Effect of Grouping

Ampacities for cable in air or conduit in air are based on a single isolated cable or conduit. Where the spacing between cable or conduit surfaces is not greater than the cable or conduit diameter, the current rating should be reduced in accordance with values given in the table. Spacings less than one quarter of cable or conduit diameter are not covered.

Group Correction Factors


Table 6 - 3

	NUM	BER OF C	ABLES IN A	AIR		
Horizontally	1	2	3	4	5	6
Vertically						
1 2	1.00	0.93	0.87	0.84	0.83	0.82
3	0.89 0.80	0.83 0.76	0.79 0.72	0.76 0.70	0.75 0.69	0.74 0.68

Group Correction Factors

Table 6 - 4

	NUMB	ER OF CO	NDUITS IN	AIR		
Horizontally	1	2	3	4	5	6
Vertically						
1	1.00	0.94	0.91	0.88	0.87	0.86
2	0.92	0.87	0.84	0.81	0.80	0.79
3	0.85	0.81	0.78	0.76	0.75	0.74

Single conductor cable underground ducts

Open circuited shield operation, i.e. shields bonded and grounded at one point only.

One cable per non-metallic duct, all cables equally loaded and in outside ducts only.

Earth ambient temperature 20°C Earth thermal resistivity RHO 90 100% Load Factor

Depth of burial - 30" to top of duct bank with ducts on 7 1/2" centers.

One conductor, Aluminum— underground ducts

One circuit — three cables in separate ducts

One conductor, **Copper** — underground ducts

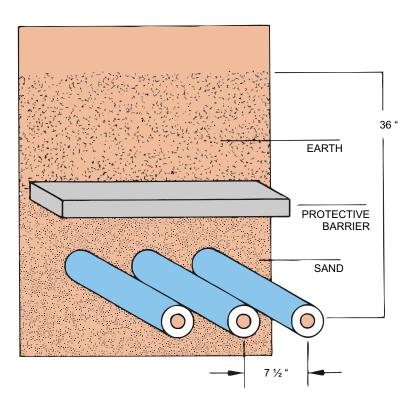
Table 6-5

			,								
		Non-Shielded		Shie	lded		Non-Shielded		Shie	elded	
	Conductor Size	600-2000 Volts Ampacity	2001-50 Amp		5001-35000 Volts Ampacity		600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
	AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
	8	80	80	86	_	_	62	62	67	_	_
١	6	104	106	114	106	114	81	83	89	83	89
١	4	135	137	148	137	148	105	107	115	107	115
١	2	176	178	192	179	193	137	139	150	139	150
١	1	202	204	220	204	220	157	159	171	159	171
١	1/0	231	233	251	232	250	180	181	195	181	195
١	2/0	264	265	286	265	286	205	206	222	206	222
١	3/0	301	302	326	302	326	235	236	254	235	253
١	4/0	345	345	372	344	371	269	269	290	268	289
١	250	379	379	409	378	407	296	296	319	295	318
١	350	461	460	496	457	493	360	359	387	357	385
١	500	564	561	605	557	600	442	440	474	436	470
١	750	706	702	757	695	749	556	553	596	547	590
	1000	823	816	880	807	870	653	648	699	641	691
١	1250	920	913	984	902	972	738	732	789	723	779
١	1500	1004	995	1073	981	1058	813	806	869	795	857
	1750	1077	1066	1149	1051	1133	880	872	940	859	926
-	2000	1139	1125	1213	1109	1196	940	930	1003	917	989

Two circuits — six cables in separate ducts

Table 6-6

One conductor, **Copper** — underground ducts One conductor, **Aluminum**— underground ducts


	Non-Shielded		Shie	lded		Non-Shielded		Shie	elded	
Conductor Size	600-2000 Volts Ampacity		00 Volts acity		000 Volts acity	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	71	71	77	_	_	56	56	60	_	_
6	93	94	101	94	101	72	73	79	73	79
4	120	121	130	121	130	93	94	101	94	101
2	155	156	168	156	168	121	121	130	121	130
1	176	177	191	177	191	138	138	149	138	149
1/0	201	202	218	201	217	157	157	169	157	169
2/0	226	229	247	228	246	178	178	192	178	192
3/0	260	260	280	259	279	203	203	219	202	218
4/0	296	296	319	294	317	231	231	249	230	248
250	325	324	349	322	347	253	253	273	251	271
350	391	390	420	387	417	306	304	328	302	326
500	475	472	509	468	505	372	370	399	367	396
750	589	585	631	579	624	464	461	497	456	492
1000	682	676	729	668	720	541	537	579	530	571
1250	759	752	811	742	800	608	603	650	595	641
1500	824	816	880	804	867	667	661	713	651	702
1750	880	871	939	858	925	719	712	768	702	757
2000	928	916	987	902	972	766	757	816	746	804

Three circuits — nine cables in separate ducts

Table 6-7

One conductor, Copper — underground ducts One conductor, Aluminum— underground ducts

	Non-Shielded		Shie	lded		Non-Shielded		Shie	elded	
Conductor Size	600-2000 Volts Ampacity	2001-50 Amp		5001-350 Amp	000 Volts acity	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	68	68	73	_	_	53	53	57	_	_
6	87	88	95	88	95	68	69	74	69	74
4	112	114	123	114	123	88	88	95	88	95
2	145	146	157	146	157	113	114	123	113	122
1	165	166	179	165	178	129	129	139	129	139
1/0	188	188	203	188	203	146	147	158	146	157
2/0	213	213	230	212	229	166	166	179	165	178
3/0	242	242	261	241	260	188	188	203	188	203
4/0	275	274	295	273	294	214	214	231	213	230
250	301	300	323	298	321	235	234	252	233	251
350	362	360	388	357	385	282	281	303	279	301
500	438	435	469	431	465	343	341	368	337	363
750	541	537	579	531	572	426	423	456	418	451
1000	625	619	667	611	659	496	492	530	485	523
1250	694	687	741	678	731	556	551	594	544	586
1500	752	744	802	733	790	609	603	650	594	640
1750	803	794	856	781	842	656	649	700	639	689
2000	845	834	899	821	885	698	689	743	678	731

Single conductor cable direct burial

1/C group buried 36" deep with cables laid on 7-1/2" centers, open circuited shield operation, i.e. shields bonded and grounded at one point only.

Earth ambient temperature 20°C Earth thermal resistivity RHO 90 100% load factor

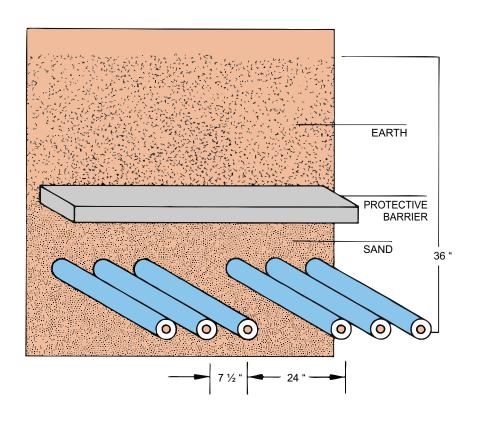

One circuit — three cables

Table 6-8

One conductor, Copper — direct burial	One conductor, Aluminum — direct burial
Chic definadeter, Copper and the barran	One conductor, Administr and consultation

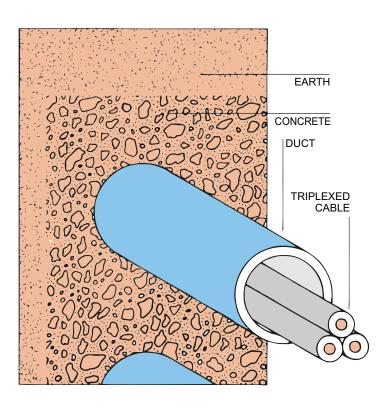
	Non-Shielded		Shie	lded		Non-Shielded		Shie	lded	
Conductor Size	600-2000 Volts Ampacity		00 Volts acity	5001-350 Amp	000 Volts acity	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	108	110	115	_	_	84	85	90	_	_
6	139	140	150	130	140	108	110	115	110	110
4	180	180	195	170	180	140	140	150	130	140
2	231	230	250	210	225	180	180	195	165	175
1	261	260	280	240	260	203	205	220	185	200
1/0	297	295	320	275	295	231	230	250	215	230
2/0	337	335	365	310	335	263	265	285	245	260
3/0	384	385	415	355	380	299	300	320	275	295
4/0	434	435	465	405	435	338	340	365	315	340
250	472	470	510	440	475	368	370	395	345	370
350	569	570	615	535	575	444	445	480	415	450
500	690	690	745	650	700	540	540	580	510	545
750	847	845	910	805	865	667	665	720	635	680
1000	980	980	1055	930	1005	778	780	840	740	795
1250	1083	1085	1165	1035	1115	868	870	935	830	895
1500	1176	1175	1265	1125	1210	952	950	1025	910	980
1750	1257	1255	1355	1200	1295	1027	1025	1105	980	1060
2000	1325	1325	1430	1265	1365	1094	1095	1180	1045	1130

Single conductor cable direct burial

1/C groups buried 36" deep with cables laid on 7-1/2" centers, second circuit similarly spaced. Groups separated 24", open circuited shield operation, i.e. shields bonded and grounded at one point only.

Earth ambient temperature 20°C Earth thermal resistivity RHO 90 100% load factor

Two circuits — six cables


One conductor, Copper — direct burial

One conductor Aluminum direct hurial

_		One conducti	or, Coppe	- unec		One conductor, Aluminum— direct buriai					
		Non-Shielded		Shie	lded		Non-Shielded		Shie	lded	
	Conductor Size	600-2000 Volts Ampacity		00 Volts acity	5001-35000 Volts Ampacity		600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
	AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
	8	101	100	110	_	_	79	80	85	_	_
	6	130	130	140	120	130	101	100	110	95	100
	4	167	165	180	160	170	130	130	140	125	130
	2	214	215	230	195	210	167	165	180	155	165
	1	241	240	260	225	240	188	190	200	175	190
	1/0	275	275	295	255	275	214	215	230	200	215
	2/0	311	310	335	290	315	243	245	260	225	245
	3/0	354	355	380	330	355	276	275	295	255	275
	4/0	399	400	430	375	405	311	310	335	290	315
	250	435	435	470	410	440	339	340	365	320	345
	350	522	520	560	495	530	408	410	440	385	415
	500	631	630	680	600	645	494	495	530	470	505
	750	773	775	835	740	795	609	610	655	580	625
	1000	892	890	960	855	920	708	710	765	680	730
	1250	985	985	1060	945	1020	790	790	851	760	820
	1500	1068	1070	1150	1025	1105	865	865	930	830	895
	1750	1140	1140	1230	1095	1180	932	930	1005	895	965
	2000	1200	1200	1295	1150	1240	991	990	1070	950	1025

Table 6-9

Three single or triplexed cable underground ducts

Closed shield operation. Shields bonded and grounded at multiple points. One triplexed cable or three single conductor cables in a duct. All cables equally loaded and in outside ducts only.

Earth ambient temperature 20°C Earth thermal resistivity RHO 90 100% load factor Depth of burial - 30" to top of duct bank with ducts on 7 1/2" centers.

One circuit — three single or triplexed conductors per duct

Table 6-10

Three single or triplexed conductors **Copper** — underground ducts

Three single or triplexed conductors **Aluminum** — underground ducts

	Non-Shielded		Shie	lded		Non-Shielded		Shie	lded	
Conductor Size	600-2000 Volts Ampacity	2001-50 Amp			000 Volts acity	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	64	64	69	_	-	50	50	54	_	_
6	85	85	92	90	97	66	66	71	70	75
4	111	110	120	115	125	86	86	93	91	98
2	146	145	155	155	165	114	115	125	120	130
1	168	170	180	175	185	131	130	140	135	145
1/0	193	195	210	200	215	150	150	160	155	165
2/0	220	220	235	230	245	172	170	185	175	190
3/0	252	250	270	260	275	196	195	210	200	215
4/0	290	290	310	295	315	226	225	245	230	245
250	319	320	345	325	345	250	250	270	250	270
350	387	385	415	390	415	304	305	325	305	330
500	471	470	505	465	500	372	370	400	370	400
750	585	585	630	565	610	468	470	505	455	490
1000	670	670	720	640	690	546	545	590	525	565

Three circuits — three single or triplexed conductors per duct

Table 6-11

Three single or triplexed conductors **Copper** — underground ducts

Three single or triplexed conductors **Aluminum** — underground ducts

	Non-Shielded		Shie	lded		Non-Shielded		Shie	elded	
Conductor Size	600-2000 Volts Ampacity		2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	56	56	60	_	_	44	44	47	_	_
6	73	73	79	77	83	57	57	61	60	65
4	95	95	100	99	105	74	74	80	77	83
2	123	125	130	130	135	96	96	105	100	105
1	141	140	150	145	155	110	110	120	110	120
1/0	161	160	175	165	175	126	125	135	125	140
2/0	183	185	195	185	200	143	145	155	145	155
3/0	208	210	225	210	225	162	160	175	165	175
4/0	237	235	255	240	255	185	185	200	185	200
250	260	260	280	260	280	203	205	220	200	220
350	313	315	335	310	330	245	245	265	245	260
500	376	375	405	370	395	297	295	320	290	315
750	461	460	495	440	475	369	370	395	355	385
1000	523	525	565	495	535	426	425	460	405	440

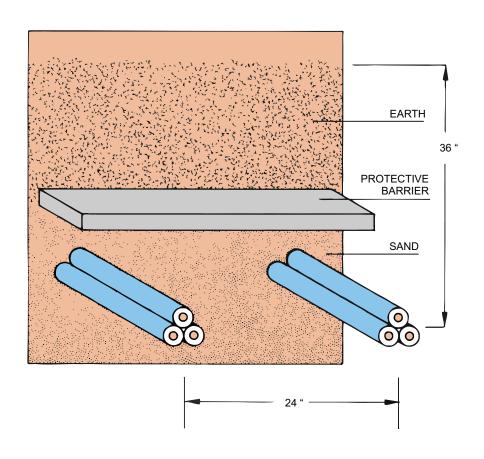

Six circuits — three single or triplexed conductors per duct

Table 6-12

Three single or triplexed conductors **Copper** — underground ducts

Three single or triplexed conductors **Aluminum** — underground ducts

	Non-Shielded		Shie	elded		Non-Shielded	Shielded				
Conductor Size	600-2000 Volts Ampacity		2001-5000 Volts Ampacity 90° C 105° C (194° F) (221° F)		5001-35000 Volts Ampacity		2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		
AWG-kcmil	90° C (194°F)				105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	
8	48	48	52	_	_	38	38	41	_	_	
6	62	62	67	64	68	48	48	52	50	54	
4	80	80	86	82	88	62	62	67	64	69	
2	103	105	110	105	115	80	80	86	80	88	
1	117	115	125	120	125	91	91	98	90	99	
1/0	133	135	145	135	145	104	105	110	105	110	
2/0	150	150	160	150	165	117	115	125	115	125	
3/0	170	170	185	170	185	133	135	145	130	145	
4/0	193	195	210	190	205	151	150	165	150	160	
250	211	210	225	210	225	165	165	180	165	175	
350	252	250	270	245	265	197	195	210	195	210	
500	301	300	325	290	310	238	240	255	230	250	
750	365	365	395	350	375	292	290	315	280	305	
1000	412	410	445	390	415	336	335	360	320	345	

Triplexed cable direct burial

Triplexed cables or three single conductors buried 36" deep and separated by 24". Shields bonded and grounded at multiple points.

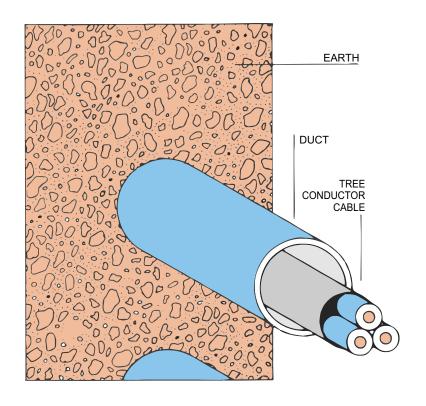
Earth ambient temperature 20°C Earth thermal resistivity RHO 90 100% load factor

One circuit Table 6-13

Three single or triplexed conductors **Copper** — direct burial

Three single or triplexed conductors **Aluminum** — direct burial

		сорро. «										
		Non-Shielded		Shie	lded		Non-Shielded	Shielded				
	Conductor Size	600-2000 Volts Ampacity		2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		
AWG-kcmil	90° C (194°F)	90° C 105° C (194° F) (221° F)		90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)		
	8	92	90	100	_	_	72	70	80	_	_	
	6	118	120	125	115	125	92	90	100	90	100	
	4	153	150	165	150	160	119	120	130	115	125	
	2	197	195	210	190	200	153	155	165	145	160	
	1	223	225	240	215	230	174	175	185	165	180	
	1/0	255	255	275	245	265	198	200	215	190	205	
	2/0	289	290	310	275	300	226	225	245	215	235	
	3/0	329	330	355	315	340	257	255	275	245	265	
	4/0	373	375	400	360	385	291	290	315	280	300	
	250	408	410	440	390	420	319	320	345	305	330	
	350	490	490	530	470	505	385	385	415	370	400	
	500	592	590	640	565	605	467	465	505	445	480	
	750	724	725	780	685	735	579	580	625	550	595	
	1000	825	825	890	770	830	672	670	725	635	685	


Two circuits

Three single or triplexed conductors **Copper** — direct burial

Three single or triplexed conductors **Aluminum** — direct burial

	Non-Shielded		Shie	lded		Non-Shielded	Non-Shielded			Shielded		
Conductor Size	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity			
AWG-kcmil	90° C (194°F)	90° C 105°C (194°F) (221°F)		90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)		
8	85	85	90	_	_	67	65	70	_	_		
6	109	110	115	105	115	85	85	90	85	90		
4	141	140	150	140	150	110	110	120	105	115		
2	181	180	195	175	185	141	140	150	135	145		
1	205	205	220	200	215	160	160	170	155	165		
1/0	233	235	250	225	240	182	180	195	175	190		
2/0	264	265	285	255	275	206	205	220	200	215		
3/0	300	300	325	290	310	234	235	250	225	240		
4/0	339	340	365	325	350	265	265	285	255	275		
250	370	370	400	355	385	289	290	310	280	300		
350	444	445	480	425	460	348	350	375	335	360		
500	534	535	575	510	550	421	420	455	405	435		
750	649	650	700	615	660	520	520	560	485	535		
1000	738	740	795	690	740	601	600	645	565	610		

Three conductor cable underground ducts

One cable per duct, all cables equally loaded and in outside ducts only.

Earth ambient temperature 20°C Earth thermal resistivity RHO 90. 100% load factor

Depth of burial - 30" to top of duct bank with duct on 7 1/2 centers.

One circuit — one cable in duct bank

Table 6-15

Three conductor **Copper** — underground ducts

Three conductor **Aluminum** — underground ducts

	Non-Shielded		Shie	lded		Non-Shielded Shielded			elded	ded	
Conductor Size	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		
AWG-kcmil	90° C (194°F)	90° C 105° C (194° F) (221° F)		90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	
8	59	59	64	_	_	46	46	50	_	_	
6	78	78	84	88	95	61	61	66	69	74	
4	102	100	110	115	125	80	80	86	89	96	
2	133	135	145	150	160	104	105	110	115	125	
1	154	155	165	170	185	120	120	130	135	145	
1/0	177	175	190	195	210	138	140	150	150	165	
2/0	202	200	220	220	235	158	160	170	170	185	
3/0	231	230	250	250	270	180	180	195	195	210	
4/0	264	265	285	285	305	206	205	220	220	240	
250	292	290	315	310	335	228	230	245	245	265	
350	354	355	380	375	400	278	280	310	295	315	
500	429	430	460	450	485	340	340	365	355	385	
750	529	530	570	545	585	426	425	460	440	475	
1000	599	600	645	615	660	495	495	535	510	545	

Three circuits — three cables in duct bank

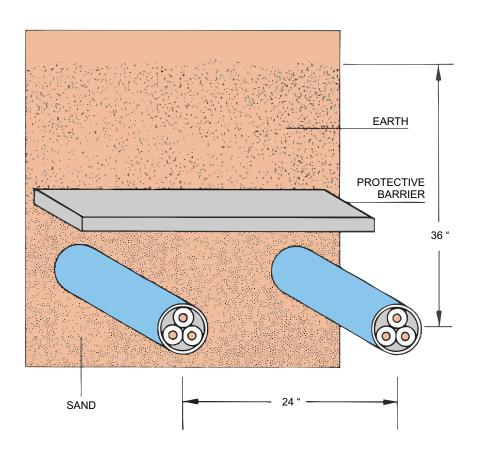
Table 6-16

Three conductor **Copper** — underground ducts

Three conductor **Aluminum** — underground ducts

	Non-Shielded		Shie	lded		Non-Shielded	Shielded			
Conductor Size	600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity	
AWG-kcmil	90° C (194°F)	90° C 105°C (194°F) (221°F)		90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	53	53	57	_	_	41	41	44	_	_
6	69	69	74	75	81	54	54	58	59	64
4	89	89	96	97	105	70	70	75	75	81
2	116	115	125	125	135	90	90	97	100	105
1	133	135	145	140	155	103	105	110	110	120
1/0	151	150	165	160	175	118	120	125	125	135
2/0	172	170	185	185	195	135	135	145	140	155
3/0	196	195	210	205	220	153	155	165	160	175
4/0	223	225	240	230	250	174	175	185	180	195
250	245	245	265	255	270	191	190	205	200	215
350	294	295	315	305	325	231	230	250	240	255
500	354	355	380	360	385	280	280	300	285	305
750	430	430	465	430	465	347	345	375	350	375
1000	484	485	520	485	515	399	400	430	400	430

Six circuits — six cables in duct bank


Table 6-17

Three conductor

Copper — underground ducts

Three conductor **Aluminum** — underground ducts

	Non-Shielded		Shie	lded		Non-Shielded	Shielded				
Conductor Size	600-2000 Volts Ampacity		00 Volts acity	5001-35000 Volts Ampacity		600-2000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35000 Volts Ampacity		
AWG-kcmil	90° C (194°F)	90° C 105°C (194°F) (221°F)		90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	
8	46	46	50	_	_	36	36	39	_		
6	70	60	65	63	68	46	46	50	49	53	
4	77	77	83	81	87	60	60	65	63	68	
2	98	98	105	105	110	77	77	83	80	86	
1	112	110	120	115	125	87	87	94	90	98	
1/0	127	125	135	130	145	99	99	105	105	110	
2/0	144	145	155	150	160	112	110	120	115	125	
3/0	163	165	175	170	180	128	130	140	130	140	
4/0	185	185	200	190	200	144	145	155	150	160	
250	202	200	220	205	220	158	160	170	160	170	
350	242	240	270	245	275	190	190	205	190	205	
500	289	290	310	290	305	228	230	245	230	245	
750	348	350	375	340	365	281	280	305	275	295	
1000	390	390	420	380	405	322	320	345	315	335	

Three Conductor cable direct burial

Cables buried 36" deep. For two cables, currents based on cables being laid on 24" centers.

Earth ambient temperature 20°C Earth thermal resistivity RHO 90. 100% load factor

One circuit — one cable

Table 6-18

Three conductor Copper — direct burial

Three conductor **Aluminum** — direct burial

	Non-Shielded		Shie	lded		Non-Shielded		Shie	lded	
Conductor Size	600-2000 Volts Ampacity		00 Volts acity		000 Volts acity	600-2000 Volts Ampacity		00 Volts acity		000 Volts acity
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	83	85	89	_	_	65	65	70	_	_
6	106	105	115	115	120	82	80	88	90	95
4	137	135	150	145	155	107	105	115	115	125
2	178	180	190	185	200	138	140	150	145	155
1	201	200	215	210	225	156	155	170	165	175
1/0	229	230	245	240	255	178	180	190	185	200
2/0	260	260	280	270	290	203	205	220	210	225
3/0	297	295	320	305	330	231	230	250	240	260
4/0	335	335	360	350	375	262	260	280	270	295
250	367	365	395	380	410	287	285	310	300	320
350	442	440	475	460	495	347	345	375	360	390
500	531	530	570	550	590	420	420	450	435	470
750	648	650	700	665	720	522	520	560	540	580
1000	729	730	785	750	810	602	600	650	620	665

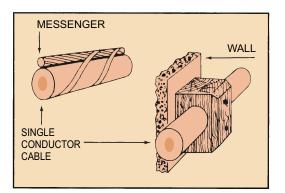
Two circuits — two cables

Table 6-19

Three conductor

Copper — direct burial

Three conductor **Aluminum** — direct burial


	Non-Shielded		Shie	elded		Non-Shielded		Shie	lded	
Conductor Size	600-2000 Volts Ampacity		00 Volts acity		000 Volts acity	600-2000 Volts Ampacity		00 Volts acity		000 Volts acity
AWG-kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	78	80	84	_	_	61	60	66	_	_
6	99	100	105	105	115	77	75	83	80	88
4	129	130	140	135	145	100	100	110	105	115
2	166	165	180	170	185	129	130	140	135	145
1	187	185	200	195	210	146	145	155	150	165
1/0	213	215	230	220	235	166	165	180	170	185
2/0	242	240	260	250	270	189	190	205	195	210
3/0	275	275	295	280	305	215	215	230	220	240
4/0	311	310	335	320	345	243	245	260	250	270
250	340	340	365	350	375	266	265	285	275	295
350	408	410	440	420	450	320	320	345	330	355
500	488	490	525	500	535	386	385	415	395	425
750	593	595	640	605	650	478	480	515	485	525
1000	666	665	715	675	730	550	550	590	560	600

Single conductor cable in air

Open circuited shield operation, i.e. shields bonded and grounded at one point only.

Any load factor from 30 to 100%. The ampacities are for a single, loaded cable in still air. In a group of loaded cables in close proximity in air, exposed or enclosed, follow the correction method shown on page 21.

Air ambient temperature is 40°C.

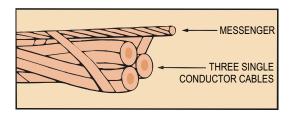
One cable per support or messenger

Copper Table 6-20

	Non-Shielded			Shi	elded			
Conductor Size AWG-	600-5000 Volts Ampacity	2001-500 Ampa			000 Volts acity	15,001-35,000 Volts Ampacity		
kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	
8	83	83	93	_	_	_	_	
6	109	110	120	110	125	_	_	
4	145	145	160	150	165	_	_	
2	192	190	215	195	215	_	_	
1	223	225	250	225	250	225	250	
1/0	258	260	290	260	290	260	290	
2/0	298	300	330	300	335	300	330	
3/0	345	345	385	345	385	345	380	
4/0	400	400	445	400	445	395	445	
250	445	445	495	445	495	440	490	
350	552	550	615	550	610	545	605	
500	695	695	775	685	765	680	755	
750	898	900	1000	885	990	870	970	
1000	1076	1075	1200	1060	1185	1040	1160	
1250	1228	1230	1370	1210	1350	1185	1320	
1500	1367	1365	1525	1345	1500	1315	1465	
1750	1493	1495	1665	1470	1640	1430	1595	
2000	1606	1605	1790	1575	1755	1535	1710	

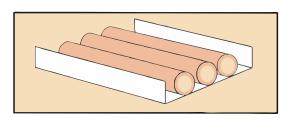
		Non-Shielded	Shielded							
	Conductor Size AWG-	600-5000 Volts Ampacity	2001-500 Ampa		,	000 Volts acity		,000 Volts acity		
	kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)		
	8	64	64	71	_	_	_	_		
	6	85	85	95	87	97	_	_		
	4	113	115	125	115	130	_	_		
	2	150	150	165	150	170		_		
	1	174	175	195	175	195	175	195		
	1/0	201	200	225	200	225	200	225		
	2/0	232	230	260	235	260	230	260		
	3/0	269	270	300	270	300	270	300		
	4/0	312	310	350	310	350	310	345		
	250	347	345	385	345	385	345	380		
	350	431	430	480	430	480	430	475		
	500	544	545	605	535	600	530	590		
	750	707	710	790	700	780	685	765		
	1000	853	855	950	840	940	825	920		
	1250	982	980	1095	970	1080	950	1055		
	1500	1103	1105	1230	1085	1215	1060	1180		
	1750	1216	1215	1355	1195	1335	1165	1300		
L	2000	1321	1320	1475	1295	1445	1265	1410		

Three single or triplexed conductors — in air


Closed shield operation. Shields bonded and grounded at multiple points. Any load factor from 30 to 100%.

Also applies to single conductors in a group and in contact with each other.

The ampacities are for a single, loaded cable in still air. In a group of loaded cables in close proximity in air, exposed or enclosed, follow the correction method shown on page 21.


For ambient temperatures other than indicated, use correction factors shown on page 21.

Air ambient temperature 40°C.

Cable in Tray

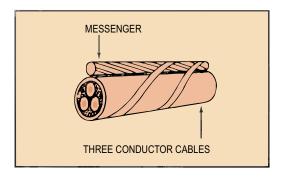
For single and multi-conductor cables installed in cable tray, refer to NEC Code ampacity tables. For non-NEC applications, refer to ICEA P-54-440.

Three cables per support or messenger

Copper

Table 6-21

очррч.				-			
	Non-Shielded	Shielded					
Conductor Size AWG-	600-5000 Volts Ampacity	2001-500 Ampa		5001-35,000 Volts Ampacity			
kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)		
8	66	65	74	_	_		
6	89	90	99	100	110		
4	117	120	130	130	140		
2	158	160	175	170	195		
1	185	185	205	195	225		
1/0	214	215	240	225	255		
2/0	247	250	275	260	295		
3/0	287	290	320	300	340		
4/0	335	335	375	345	390		
250	374	375	415	380	430		
350	464	465	515	470	525		
500	580	580	645	580	650		
750	747	750	835	730	820		
1000	879	880	980	850	950		


	Non-Shielded		Shie	elded	
Conductor Size AWG-	600-5000 Volts Ampacity	2001-500 Ampa		5001-35,000 Volts Ampacity	
kcmil	90° C (194°F)	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	51	50	57	_	_
6	69	70	77	75	84
4	91	90	100	100	110
2	123	125	135	130	150
1	144	145	160	150	175
1/0	167	170	185	175	200
2/0	193	195	215	200	230
3/0	224	225	250	230	265
4/0	262	265	290	270	305
250	292	295	325	300	335
350	364	365	405	370	415
500	458	460	510	460	515
750	598	600	665	590	660
1000	716	715	800	700	780

Three conductor cable in air

Any load factor from 30 to 100%.

The ampacities are for a single loaded cable in still air. In a group of loaded cables in close proximity in air, exposed or enclosed, follow the correction method shown on page 21.

Air ambient temperature 40°C.

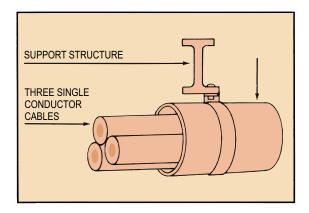
One cable in air per support or messenger

Copper

Table 6-22

ooppei Table 0-22								
	Non-Shielded		Shie	elded				
Conductor Size AWG-	600-5000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35,000 Volts Ampacity				
kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)			
8	59	59	66	_	_			
6	79	79	88	93	105			
4	104	105	115	120	135			
2	138	140	154	165	185			
1	161	160	180	185	210			
1/0	186	185	205	215	240			
2/0	215	215	240	245	275			
3/0	249	250	280	285	315			
4/0	287	285	320	325	360			
250	320	320	355	360	400			
350	394	395	440	435	490			
500	487	485	545	535	600			
750	615	615	685	670	745			
1000	707	705	790	770	860			

	Non-Shielded	Shielded						
Conductor Size AWG-	600-5000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35,000 Volts Ampacity				
kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)			
8	46	46	51	_				
6	61	61	68	72	80			
4	81	81	90	95	105			
2	108	110	120	125	145			
1	126	125	140	145	165			
1/0	145	145	160	170	185			
2/0	168	170	185	190	215			
3/0	194	195	215	220	245			
4/0	224	225	250	255	285			
250	250	250	280	280	315			
350	309	310	345	345	385			
500	385	385	430	425	475			
750	495	495	550	540	600			
1000	584	585	650	635	705			


Three single conductor cables in conduit — in air

Closed shield operation. Shields bonded and grounded at multiple points. Any load factor from 30 to 100%.

One triplexed cable or three single conductor cables in a conduit.

The load ratings are for a single, loaded cable in still air. In a group of loaded cables in close proximity in air, exposed or enclosed, follow the correction method shown on page 21.

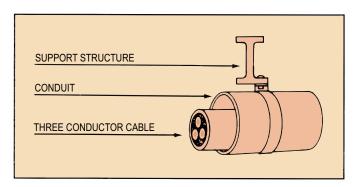
Air ambient temperature 40°C.

One isolated conduit — three single or triplexed conductors — in air

Copper

Table 6-23

	Non-Shielded		Shie	elded	
Conductor Size AWG-	600-5000 Volts Ampacity	2001-500 Ampa		5001-35,000 Volts Ampacity	
kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)
8	55	55	61	_	_
6	75	75	84	83	93
4	97	97	110	110	120
2	130	130	145	150	165
1	156	155	175	170	190
1/0	179	180	200	195	215
2/0	204	205	225	225	255
3/0	242	240	270	260	290
4/0	278	280	305	295	330
250	317	315	355	330	365
350	384	385	430	395	440
500	477	475	530	480	535
750	598	600	665	585	655
1000	689	690	770	675	755


	Non-Shielded		Shielded						
Conductor Size AWG-	600-5000 Volts Ampacity	2001-5000 Volts Ampacity		5001-35,000 Volts Ampacity					
kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)				
8	43	43	48	_	_				
6	58	58	65	65	72				
4	76	76	85	84	94				
2	102	100	115	115	130				
1	122	120	135	130	150				
1/0	139	140	155	150	170				
2/0	159	160	175	175	200				
3/0	189	190	210	200	225				
4/0	217	215	240	230	260				
250	249	250	280	255	290				
350	303	305	340	310	350				
500	381	380	425	385	430				
750	488	490	545	485	540				
1000	578	580	645	565	640				

Three conductor cable — conduit in air

Any load factor from 30 to 100%.

The ampacities are for a single, loaded cable in still air. In a group of loaded cables in close proximity in air, exposed or enclosed, follow the correction method shown on page 21.

Air ambient temperature 40°C.

One isolated conduit — three conductors in air Copper Table 6-24

				-			
	Non-Shielded		Shie	Shielded			
Conductor Size AWG-	600-5000 Volts Ampacity	2001-50 Amp		5001-35,000 Volts Ampacity			
kcmil	90° C (194°F	90° C (194°F)	105°C (221°F)	90° C (194°F)	105°C (221°F)		
8	52	52	58				
6	69	69	77	83	92		
4	91	91	100	105	120		
2	123	125	135	145	165		
1	141	140	155	165	185		
1/0	166	165	185	195	215		
2/0	190	190	210	220	245		
3/0	218	220	245	250	280		
4/0	255	255	285	290	320		
250	282	280	315	315	350		
350	348	350	390	385	430		
500	425	425	475	470	525		
750	524	525	585	570	635		
1000	590	590	660	650	725		

Aluminum

Alaiiiiiai	••				
8	41	41	46		_
6	53	53	59	64	71
4	71	71	79	84	94
2	96	96	105	115	125
1	110	110	125	130	145
1/0	130	130	145	150	170
2/0	149	150	165	170	190
3/0	170	170	190	195	220
4/0	200	200	225	225	255
250	221	220	245	250	280
350	274	275	305	305	340
500	341	340	380	380	425
750	432	430	480	470	520
1000	504	505	560	550	615

NEC Code installations *Ampacity at 75°C conductor temperature 30°C ambient

Table 6-25

			60	0V			
Co	onductor Size	One to 3 Conductors in Raceway, Cable or Direct Burial		Single Conductor in Free Air			
_	AWG or KCMIL		AMPERES				
		CU	AL	CU	AL		
	14 12 10 8 6 4 2 1 1/0 2/0	15 20 30 50 65 85 115 130 150		20 25 40 70 95 125 170 195 230 265	20 30 55 75 100 135 155 180 210		
	3/0 4/0 250 300 350 400	200 230 255 285 310 335	155 180 205 230 250 270	310 360 405 445 505 545	240 280 315 350 395 425		
	500 600 700 750 800 900	380 420 460 475 490	310 340 375 385 395 425	620 690 755 785 815 870	485 540 595 620 645 700		
	1000 1250 1500 1750 2000	520 545 590 625 650 665	425 445 485 520 545 560	935 1065 1175 1280 1385	750 750 855 950 1050 1150		

Correction factors for room temperatures over 30°C (86F) ambient

40°C 45°C	104°F 113°F	.88 .82	.88 .82
50°C	122°F	.75	.75
55°C	131°F	.67	.67
60°C	140°F	.58	.58 .33
70°C	158°F	.33	.33

^{*}Ampacities are maximum allowed by the National Electrical Code. Sizes of conductors used on all normal electrical circuits in buildings may be determined on the basis of N.E.C. requirements taking into account voltage drop and operating efficiency at lower conductor temperatures.

Methods for Determining Conduit Sizes

Conduits or ducts should be properly constructed having smooth walls and of adequate size as determined by the overall cable diameter and recommended percentage of fill of conduit area.

Dimensions of conduit (Sch. 40)

Table 7-1

Nominal size conduit inches	Internal diameter inches	Wall Thickness inches	Area square inches
1	1.049	0.133	0.86
1 1/4	1.380	0.140	1.50
1 1/2	1.610	0.145	2.04
2	2.067	0.154	3.36
2 1/2	2.469	0.203	4.79
3	3.068	0.216	7.38
3 1/2	3.548	0.226	9.90
4	4.026	0.237	12.72
5	5.047	0.258	20.00
6	6.065	0.280	28.89

For groups or combinations of cables it is recommended that the conduit or tubing be of such size that the sum of the cross-sectional areas of the individual cables will not be more than the percentage of the interior cross-sectional area of the conduit or tubing as shown in the following tables.

Maximum percent internal area of conduit or tubing

Table 7-2

Number of cables					
	1	2	3	4	Over 4
Max % Fill	53	31	40	40	40

^{*} This section summarizes procedures, calculations, and recommendations required for proper installation practices.

For more information consult Okonite's "Installation Practices for Cable Raceway Systems" handbook.

Maximum percent internal diameter of conduit or tubing

Table 7-3

Number of cables					
1 2 3 4				4	
Max % Diameter	72.8	39.3	36.5	31.6	

Maximum allowable diameter (in inches) of individual cables in given size of conduit

Table 7-4

All cables of same outside diameter					
Nominal	Number of cables having same O.D.			0.D.	
size conduit	1	2*	3*	4*	
1/2	0.453	0.244	0.227	0.197	
3/4	0.600	0.324	0.301	0.260	
1	0.763	0.412	0.383	0.332	
1 1/4	1.010	0.542	0.504	0.436	
1 1/2	1.173	0.633	0.588	0.509	
2	1.505	0.812	0.754	0.653	
2 1/2	1.797	0.970	0.901	0.780	
3	2.234	1.206	1.120	0.970	
3 1/2	2.583	1.395	1.296	1.121	
4	2.930	1.583	1.470	1.273	
5	3.675	1.985	1.844	1.595	
6	4.416	2.385	2.215	1.916	

NOTE: To determine the size conduit required for any number (n) of equal diameter cables in excess of four, multiply the diameter of one cable by $\sqrt{\frac{n}{4}}$

This will give the "equivalent" diameter of four such cables and the conduit size required for (n) cables may then be found by using the column for four cables.

^{*}These diameters are based on percent fill only. The Jam Ratio, Conduit I.D. divided by one Cable O.D., should be checked to avoid possible jamming.

Conduit Sizes **Maximum Pulling Tensions**

Conduit size for combinations of cable with different outside diameters

This size conduit required for a group of cables of different sizes may be determined by calculating the equivalent diameter d" and then finding the size required for this diameter in the tables on previous page. For 1 to 4 Cables:

d" = Equivalent diameter of same number of cables all of same outside diameter having total area equal to total area of group of cables of different sizes (a fictitious diameter appearing in column corresponding to total number of cables $(n_1 + n_2 + n_m + \dots)$

n_{1 =} number of cables of diameter d₁

 n_2 = number of cables of diameter d_2

 n_m = number of cables of diameter d_m , etc.

$$d" = \sqrt{\frac{n_1 \ d_1{}^2 \ + \ n_2 \ d_2{}^2 \ + \ n_m \ d_m{}^2 \ + \ \dots \ }{n_1 \ + \ n_2 \ + \ n_m \ + \ \dots \ }}}$$

EXAMPLE: Find size conduit for 2 neoprene-sheathed cables having diameter of 1.20" and 1 cable having diameter 0.63"

$$d'' = \sqrt{\frac{2 \times (1.20)^2 + 1 \times (0.63)^2}{2 + 1}} = \sqrt{\frac{2.88 + .397}{3}}$$
$$= 1.045$$

In the column for three cables a diameter of 1.045" is between 0.901" and 1.120". Therefore 3" conduit is required.

Maximum pulling tensions

The force required to pull cable into a duct or the maximum pulling length can be determined from the following:

A. The maximum stresses must not be exceeded when pulling a cable:

1. The maximum tension shall not exceed 0.008 times CM area when pulled with a pulling eye attached to the copper or aluminum conductors.

$$T_{m} = 0.008 \times n \times CM$$

 $T_m = maximum tension lb.$

where

n = number of conductors in cable

CM = circular mil area of each conductor

The maximum tension for a 1/C cable should not exceed 6,000 lbs. The maximum tension for 2 or more conductors should not exceed 10,000 lbs.

2. The maximum stress for leaded cables shall not exceed 1500 lb./sq. inch of lead sheath area when pulled with a basket grip.

 $T_m = 4712 t(D-t)$

where t = lead sheath thickness, inches

D = outside diameter of cable, inches

- 3. The maximum tension shall not exceed 1000 lbs. for non-leaded cables when pulled with a basket grip. (However, maximum stress calculated for item 1 cannot be exceeded.)
- 4. The maximum tension at a bend shall not exceed 500 pounds times the radius of curvature of the duct expressed in feet. (But maximum tension calculated from items 1, 2 or 3 cannot be exceeded). Thus the minimum radius should not be less than $R(ft) = \frac{T}{500}$ where T is maximum tension calculated under A1, A2 or A3 or the radii in Tables 7-6 and 7-7.
- B. The pulling tension in a given horizontal duct section may be calculated from the following.
- 1. For a straight section the pulling tension is equal to the length of the duct run multiplied by the weight per foot of the cable and the coefficient of friction which, will vary depending on lubrication used.

$$T = L x w x f$$

where T = total pulling tension

L = length of duct run in ft.

w = weight of cable in lbs. per ft.

f = coefficient of friction

For ducts having curved sections, the following formula applies.

$$T_{out} = T_{in} e^{fa}$$

where T_{out} = tension out of bend

Tin = tension into bend

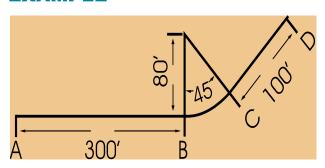
f = coefficient of friction

e = naperian logarithm base 2.718

a = angle of bend in radians

To aid in solving the above formula, values of e^{fa} for specific angles of bend and coefficients of friction are listed in the Table 7-5 below. For more precise values, consult Okonite's Installation Practices Manual.

Table 7-5


Angle of bend	Values of e fa for coefficients of friction f=			
degrees/radians	0.75	0.50	0.35	
15/0.2618	1.22	1.14	1.10	
30/0.5236	1.48	1.30	1.20	
45/0.7854	1.80	1.48	1.32	
60/1.0472	2.19	1.68	1.44	
90/1.5708	3.25	2.20	1.73	

For two or more cables for friction (f) use .5 for lubricated duct and .75 for dry duct. These factors include weight correction factor for maximum fill.

Maximum Pulling Tensions Example Problems

EXAMPLE

Size of Cable = 3/C-500 kcmil Copper Cdrs.,

9/64" (0.141") lead;

O.D. = 3.0"

Weight of Cable = 8 lb./ft.

Coefficient of friction = 0.5

Pulling from A to D

Tension at $B = T_1 = L_1 \text{ wf}$

 $= T_1 = 300 X 8 X 0.5 = 1200 lb.$

Tension at $C = T_1 e^{fa}$

 $a = 45^{\circ} = 0.7854 \text{ radians}$

fa = 0.3927

 $e^{fa} = 1.48$

Tension at C = 1200 X 1.48 = 1776 lb.

Tension C to D $=T_2 = L_2$ wf

 $T_2 = 100 \text{ X 8 X } 0.5 = 400 \text{ lb.}$

 $T = T_2 + T_1 e^{fa} = 400 + 1776 = 2176 lb.$

Calculated Max. Tension

using pulling eye $(A-1) = 0.008 \times 3 \times 500,000 = 12,000 \text{ lb.}$

Therefore, the 10,000 lb. limitation applies.

Permissible Max. Tension

using basket grip $(A-2) = 4712 \times .141(3.0-0.141) = 1900 \text{ lb.}$

Permissible Max. Tension due to sidewall pressure limitation at curve BC $(A-4) = 500 \times 80 = 40,000 \text{ lb}$.

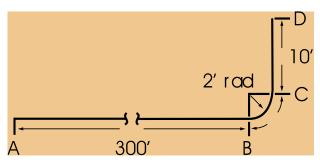
Thus, it is seen cable must be pulled with an eye from A to D, as the tension exceeds that permissible for a basket grip.

Pulling from D to A

Tension at C = 400 lb.

Tension at B = 400 X 1.48 = 592 lb.

Total Tension at A = 1200 + 592 = 1792 lb.


This shows the cable could be pulled in this direction with either a pulling eye or basket grip.

CONCLUSIONS

A lower tension is obtained by placing the let-off reel at the end nearest the bend.

The radius of bend does not affect the total pulling tension, however, the pressure against the duct is affected by the radius of the bend. In this case, the minimum radius of bend if pulled from A is 1776/500 = 3.6 ft., while if pulled from D is 592/500 = 1.2 ft.

EXAMPLE

Size of Cable = 1 X 1000 kcmil Copper Cdr.

Weight of Cable = 6 lb./ft.

Coefficient of Friction = 0.5

Pulling from A to D

Tension at B = 300 X 6 X 0.5 = 900 lb.

 $e^{fa} = 2.20$

Tension at $C = 900 \times 2.20 = 1980 \text{ lb.}$

Tension at $D = 10 \times 6 \times 0.5 + 1980 = 2010 \text{ lb.}$

It is seen that this exceeds 1000 lb. which is the maximum permissible tension for pulling grips so this must be pulled with a pulling eye which would permit a maximum tension of 6,000 lbs.

Maximum allowable tension at bend is $500 \times 2 = 1000$ lb. thus, it is seen that this cable cannot be pulled around this bend when pulled from A without exceeding the permissible pressure against the duct. It is therefore necessary to pull this cable from D.

Pulling from D to A

Tension at $C = 10 \times 6 \times 0.5 = 30 \text{ lb.}$

Tension at $B = 2.2 \times 30 = 66 \text{ lb.}$

Tension at A = 900 + 66 = 966 lb.

This is satisfactory in all respects. The total tension does not exceed 1000 lb. and the tension at the curve does not exceed 1000 lb. so this cable can be pulled from D with a pulling grip.

The examples shown here are truncated demonstrations of pulling tension calculations. They do not take the weight correction factor into consideration. For more precise calculations, see Okonite publication, "Installation Practices for Cable Raceway Systems."

Okonite Cables Section 7

Installation Practices

Minimum Bending Radii

The following are the minimum values for the radii to which insulated cables may be bent for permanent training during installation. These limits do not apply to conduit bends, sheaves or other curved surfaces around which the cable may be pulled under tension while being installed. Larger radii bends may be required for such conditions to limit sidewall pressure. In all cases the minimum radii specified refers to the inner surface of the cable and not to the axis of the cable.

Power and control cables without metallic shielding or armor

The minimum bending radii for both single-and multipleconductor cable with or without lead sheath and without metallic shielding or armor are as follows:

Table 7-6

	Overall Diameter of Cable, Inches			
Thickness of Conductor	1,000 and	1.001 to	2.001 and	
Insulation	Less	2.000	over	
Inches	Minimum Bending Radius as a Multiple of Cable Diameter			
.156 and less	4	5	6	
.157 to .315	5	6	7	
.316 and over		7	8	

Twisted pair instrumentation cable

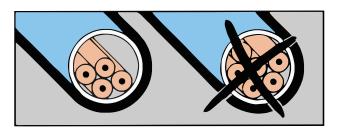
Table 7-7A

Type of Cable	Minimum Bending Radius as a Multiple of Cable Diameter
Armored, wire type or corrugated of Non-armored, without shielded conon-armored, metallized-polyest Non-armored, flat or corrugated to	onductors 6 er or braid shielded 8
*With shielded Conductors 8	
**For longitudinally applied corruga	ated shield with PVC jacket 15

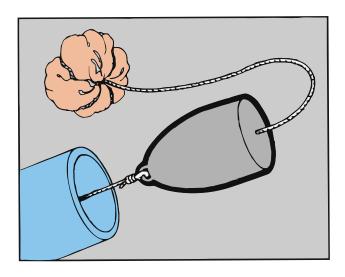
Power and control cables with metallic shielding or armor

or armor		Table 7-7		
Type of Cable	Minimum E Radius as of Cable D	a Multiple		
	Power	Control		
Armored, flat tape or wire type Armored, smooth aluminum sheath,		12		
0.75 inches cable diameter	•	10*		
0.76 to 1.5 inches cable diamete	r 12	12		
over 1.5 inches cable diameter .	. 15	15		
Armored, corrugated sheath or	. 7***	7		
interlocked type		7 12		
with shielded multi-conductor		**		
Non-armored, flat or corrugated tape shielded single conductor triplexed		12		
tape shielded multi-conductor		**		
multi-conductor overall tape shie	ld 12	12		
LCS with PVC jacket	. 15	15		
Non-armored, flat strap shielded	. 8	_		
Non-armored, wire shielded	. Table 7-6	· —		
Non-armored, concentric neutral	. 8	_		
* with shielded conductors 12				
** 12 times single conductor diameter or 7 times overall cable diameter — whichever is greater				
*** Also applies to non-shielded cabl	es			
LCS = longitudinally applied corrugated shield				

Rubber jacketed flexible portable power and control cables used on take-up reels and sheaves Table 7-8


Type of Cable	Minimum Bending Radius as a Multiple of Cable Diameter
0-5 kV · · · · · · · · · · · · · · · · · ·	6
Over 5 kV · · · · · · · · · · · · ·	8

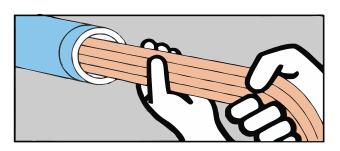
Procedures


General precautions for installing wires and cables in conduit

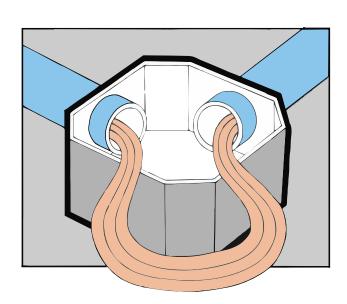
Investigations have shown that failures often develop in all types of cable because of damage caused during installation by carelessness, inexperience and failure to observe certain simple precautions. For the benefit of the many new workers involved in electrical work and in the interests of eliminating such preventable causes of electrical shutdowns and loss of production, we suggest the following procedures:

Before Pulling Wire: Observe all National Electric Code rules regarding installation. Check the conduit and wire sizes and actual overall diameters to be sure the approved "fill" will not be exceeded. Don't "crowd" the conduit.

As in the case of any type of wire, when difficult runs are encountered, consideration should be given to the use of larger conduits or additional pull boxes. Pull a short mandrel or plug closely approximating the diameter of the conduit through to loosen any burrs, and check obstructions. Follow it up with a swab to clean out any remaining dirt or foreign matter.



Hints on lubrication to make pulling easier


Any of the following simple methods of lubricating wires as they enter the conduit apply to thermosetting or thermoplastic jacketed wires and cables, but are also suitable for ordinary braided wires and cables.

- 1. Use a UL listed, commercially available lubricant compatible with the cable outer surface. Petroleum grease is not acceptable.
- 2. For long and difficult runs, prelubricate the conduit itself at the time the mandrel or plug is pulled through.

While Pulling Wire: Always have a person feed wire straight into conduit by hand or, for large conductors, over a large diameter sheave, avoiding short bends, sharp edges and "crossovers".

Remove all lashings used for temporary bunching of individual wires before they enter conduit. Lead-out wires at all pull boxes and conduits feeding them in again for next run. Never pull directly around short right-angled bends.

Procedures

After Pulling Wire: Seal exposed ends with a heat shrink/cold shrink end cap or rubber tape (vinyl tape is not acceptable) to prevent moisture entering the cable pulled and the wire left on coil or reel.

For Switchboard and Similar Open Wiring: When binding groups of wires — especially non-braided wire — use wide tape or straps with rounded edges instead of narrow strings so as to avoid cutting or deforming the insulation at the point of contact.

Preferred practice for burying cables directly in the earth

Regardless of the type of cable you bury underground — whether it has a thermoset jacket, thermoplastic jacket or metallic armor — ordinary precautions in its installation will extend cable life and prevent service interruptions caused by mechanical damage.


Observe these two basic principles:

- (a) Keep rocks and other rough material away from cable. This will prevent bruising or deformation of the coverings if extraordinary pressures develop.
- (b) Pack soft fill around cable to prevent stone bruises and cuts. Incidentally, this improves heat dissipation which will increase cable efficiency and prolong its life.

Follow this procedure during installation

- 1. Dig trench deep enough (per NEC or NESC requirements) so cable will not be disturbed by plowing, surface digging, paving or excavation and will be below frost level
- 2. Use a bedding of sand or rock-free screened fill as a cushion. Care should be taken that the fill is free from rotting wood or organic matter that might attract insects. Lay the cable on this bedding, permitting it to "snake" slightly in the trench to allow slack when earth settles.

Typical Direct Buried Detail

In general, it is preferable to use a jacketed multiconductor cable or a metallic tape if it is a single conductor cable, for direct burial, since this design offers a more rugged construction, is easier to install and prevents trouble from crossovers or stone bruises. A metallic tape of sufficient thickness is recommended for environments where termites or similar insects or small rodents may be encountered. The extra cost of the multiconductor cable design is often offset by use of a narrower trench and the reduced possibility of damages and subsequent outages and repairs.

If single conductor cables are laid in a trench, it is desirable to keep them separated uniformly, about six inches between centers, so earth and sand can be filled in around them. Be certain there are no crossovers.

- 3. After the cable is laid, and before back-filling, cover the cable with sand or soft earth, free from stones, rocks or other material that might be forced against the cable during back-filling, or when settling or frost-heaving disturbs the surrounding earth.
- 4. These preventative measures are desirable for all types of underground cable, whether metallic or nonmetallic. The extent of the precautions may vary from one installation to the next depending on the type of soil or the likelihood of disturbance.

Procedures

In urban areas or where a great deal of digging and excavating occurs, it is helpful to lay a protective covering on the soft fill about 6-8 inches above the cable to protect it and warn workmen of its presence. Such added protection is particularly desirable with unarmored cable. Strips of heavy woven galvanized wire fencing or concrete slabs laid on soft rock-free fill at least 6 inches above the cable are preferred where mechanical protection is necessary.

Under highways and railroad rights-of-way, it is usually best to pull the cable through a pipe or conduit. This should be taken into careful consideration when determining current carrying capacities as the temperature will be higher here than where directly buried.

Handling and storage recommendations

On receipt, cable protective covering should be inspected for evidence of damage during shipment. A report should immediately be made to carrier if evidence of damage is found.

Unloading should be accomplished so that equipment used does not contact cable surface, and in the case of protective wrap that the equipment does not contact the protective wrap. If unloading is accomplished by crane, either a cradle supporting the reel flanges or a shaft through the arbor hole should be used. If a fork lift is utilized, the forks must lift the reel at 90° to the flanges and must be long enough to make complete lifting contact with both flanges. Under no circumstances should the forks contact the cable surface or protective wraps.

If an inclined ramp is used for unloading, the ramp must be wide enough to contact both flanges completely and stopping of the reels at the bottom shall be accomplished by using the reel flanges and not the surface of the cable.

Under no circumstances should reels be dropped from the delivering vehicle to the ground.

Reels should be stored on a hard surface so that flanges do not sink into the earth and allow the weight of the reel and cable to rest on the cable surface.

Reels should never be stored on their sides.

Reels should be stored in an area where construction equipment, falling or flying objects or other materials will not contact the cable.

Cable should be stored in an area where chemicals or petroleum products will not be spilled or sprayed on the cable. The bottom and inner turns of cable with unjacketed sheath or armor (aluminum or steel) which remain continuously wet

will corrode. It is recommended that these reels be stored indoors. $% \label{eq:controlled}$

When a reel of cable is rolled from one point to another, care must be taken to see that there are no objects on the surface area which could contact or damage the cable surface or protective wrap. The reel should be rolled in the correct direction to prevent loosening of the cable on the reel.

Cable should be stored in an area away from open fires or sources of high heat.

If a length of cable has been cut from the reel, the cable end should be immediately resealed to prevent the entrance of moisture.

When cables are to be installed in cold weather, they should be kept in heated storage for a least 24 hours before installation and not installed at temperatures lower than the following:

Type of Insulation or Jacket	Minimum Temperature for Installation
CPE (TP)	-30 C -22 F
CPE (TS)	-40 C -40 F
EPR	-40 C -40 F
ETFE	-65 C -85 F
CSPE (Hypalon)	-20 C -4 F
Neoprene	-20 C -4 F
PE	-40 C -40 F
PVC	-10 C 14 F
PVC (Arctic Grade)	-40 C -40 F
TPPO (LS/ZH)	-30 C -22 F
XLPO (LS/ZH)	-35 C -31 F
XLPE	-40 C -40 F

CPE-Chlorinated Polyethylene

CSPE (Hypalon)-Chlorosulfonated Polyethylene

EPR-Ethylene Propylene Rubber

ETFE (Tefzel)-Modified Ethylene Tetrofluoroethylene

PE-Polyethylene

PVC-Polyvinyl Chloride

TPPO-Thermoplastic Polyolefin

XLPO-Cross Linked (Thermoset) Polyolefin

XLPE-Cross Linked Polyethylene

TP-Thermoplastic

TS-Thermoset

LS-Low Smoke

ZH-Zero Halogen

For jacket performance data, see page 55.

Procedures

Borehole Cable Safety Factor Calculations

Factors of safety in cables under mechanical tension

Following are the recommended factors of safety (ratio of breaking strength of cable to cable weight) in vertical risers, borehole and aerial cable.

Armored Borehole and Mine Shaft Cable $\cdot \cdot \cdot F = 5$ Unarmored Borehole and Mine Shaft Cable • F = 7 Armored Vertical Riser Cable F = 7

Power conductors for unarmored borehole and mine shaft cables shall be stranded annealed coated or uncoated copper provided the minimum safety factor is not less than 7 when calculated by the following formula. If the minimum safety factor is less than 7, medium hard drawn copper shall be used but in no case shall the factor of safety be less than 7.

$$F = \frac{AT}{W}$$

Where

F = Factor of safety

T = Tensile strength of materials in pounds per square inch (24,000 for annealed copper, 40,000 for medium hard-drawn copper and 50,000 for wire armor)

A = Area of the power conductors in square inches or area of wire armoring

W = Weight of cable in pounds

Examples of calculations for determining the maximum length of borehole cable that may be suspended from one end are shown below:

Given: 3/C, 4/0, Borehole cable unarmored, 5kVery OD = 2.23 in W = 4.51 lb. per foot

For Unarmored Borehole Cable:

Area of one conductor = $\frac{\pi}{4}$ (211,600 CM x 10 $^{-6}$)

= .166 sq. in.

For Annealed copper:

$$7 = \frac{(3 \times .166) (24,000)}{W} \qquad W = 1710 \text{ lb.}$$

Length of cable = $\frac{1710 \text{ lb.}}{4.51 \text{ lb./ft.}} = 379 \text{ ft.}$

For Medium Hard Drawn copper:

$$7 = \frac{(3 \times .166) (40,000)}{W} \qquad W = 2850 \text{ lbs}$$

Length of cable =
$$\frac{2850}{4.51}$$
 = 630 ft.

Given: 3/C, 4/0, Borehole cable armored, 5kVery

OD = 2.62 in.

Size armor wire - #6 BWG

Number of Armor wires - 36

W = 8.58 lb. per foot

For Armored Cable:

#6 Bwg: OD = .203"

Area of one wire = $\frac{\pi}{4}$ (.203)² = .0324 sq. in. $5 = \frac{(.0324 \times 36) \times 50,000}{W} \quad W = 11,651 \text{ lbs.}$

Length of cable = $\frac{11,651 \text{ lb.}}{8.58 \text{ lb./ft.}} = 1,358 \text{ ft.}$

Continuous support by clamps:

A useful formula for determining the spacing of cable clamps

$$S = \frac{9 D L}{W}$$

S = Distance between clamps in ft.

D = Cable diameter in inches

L = Clamp length in inches

W = Weight per foot of cable in lbs.

Galvanized steel

Table 7-9

# Bwg	Diam. in Mils	Approx. wt. in pounds per 1000 ft.	Approx. Breaking* Stress in Pounds	Resistance in Ohms at 68°F Per 1000 ft.
4	238	153	2,225	1.52
6	203	112	1,619	2.09
8	165	74	1,069	3.16
10	134	49	705	4.79
12	109	32	467	7.24
14	83	19	271	12.44

*Based on a stress of 50,000 psi.

Procedures

Sag and tension calculations for aerial cables

The sag and tension are based on the formulas for a parabola which are approximately the same as for a true catenary for small deflections. This well known formula is:

$$t = \frac{s^2W}{8d}$$

where t = horizontal tension in messenger (lbs.)*

s = span length (ft.)

w = weight of complete cable including messenger (lbs. per foot)

d = sag(ft.)

*Use 50% of messenger breaking strength for Heavy Loading and 25% of breaking strength for Normal Loading.

The total tension in the messenger at the support is the horizontal tension plus the vertical component due to the dead load. The vertical component has been neglected.

Some typical messenger breaking strengths are given below.

For more information see ICEA Publication P-79-561 "Guide for Selecting Aerial Cable Messengers and Lashing Wires".

Determination of ice and wind loading

Ice and wind loading are determined by geographical location. The United States is divided into three districts for which standard loading conditions are specified in the National Electric Safety Code. The loadings for the various districts are as follows:

Loading District	Heavy	Medium	Light
Radial Thickness of Ice (in.)	1/2	1/4	0
Horizontal Wind Pressure (lbs/sq.ft)	4*	4*	9**
Temperature (F)	0	15	30
Constant-k (lbs/ft.)		0.22	0.05
* 40 mph	1		

The resultant weight of loaded cables is calculated as follows:

i = Weight of ice loading (lbs/ft.) = 1.24 t (D + t)

t = Thickness of ice (inches)

D = Diameter of cable (inches)

P = Force due to wind (lbs./sq. ft.)

h = Force due to wind (lbs/ft.) = $\frac{P(D + 2t)}{12}$

w' = Weight of unloaded cable

w" = Vertical weight of loaded cable

w" = w' + i

The loaded weight of the cable is the resultant of the vertical and horizontal weights plus the proper constant.

w" = Resultant weight of loaded cable

$$w''' = \sqrt{(w' + i)^2 + h^2} + k$$

Messenger characteristics

Table 7-10

		EHS Copperclad (30%)		Aluminum-Clad Steel		EHS Galvanized Steel			Stainless Steel Type 316				
Mess	minal senger ize	lb/ft	Breaking Strength (lbs)	Area x Modulus (ae)	lb/ft	Breaking Strength (lbs)	Area x Modulus (ae)	lb/ft	Breaking Strength (lbs)	Area x Modulus (ae)	lb/ft	Breaking Strength (lbs)	Area x Modulus (ae)
	1/4" 7x		_	_	.104	6301	825700	.121	6650	871000	.135	7650	1060000
5,	/16" 7x	.204	9196	1313000	.165	10020	1313000	.205	11200	1502000	.212	11900	1665000
;	3/8" 7x	.324	13890	2088000	.385	15930	2088000	.273	15400	1821000	.286	16200	2217000
7,	/16" 7x	.409	16890	2633000	.433	19060	2633500	.399	20800	2770000	.416	23400	3234000
	1/2" 7x	.515	20460	3319000	.486	22730	3319000	.517	26900	3442000	.535	30200	4190000
9,	/16" 7x	.650	24650	4186000	.546	27030	4186000	.671	35000	4469000	_	_	_
9/1	16" 19x	.700	30610	4496000		_		.637	33700	4383000	.670	36200	5240000

Coefficient of Linear Expansion .0000072, Except Stainless Steel = .0000092 Per Degree F.

Procedures

Typical example of sag and tension calculations

3 conductor 2/0 Self-Supporting Cable Cable:

rated at 5 kV.

3/8" Extra High Strength (30% Conductivity) Messenger:

Copperweld

125 ft. Ruling Span:

Normal Tension: 3470 lbs. (25% of ultimate strength) To find the sag at 60F and the sag and tensions under heavy loading conditions:

Weight of complete cable w' = 2.712 lbs./ft. (2712 lbs./1000')

Diameter of cable (circumscribed circle) D = 2.50"

Normal Tension T = 3470 lbs.Area x Modulus, ae = 2,088,000Calculate normal sag at 60°F.

Span S = 125 ft.

$$\frac{Sw'}{T} = \frac{125 \times 2.712}{3470} = 0.0976$$

From Table on page 49 note that sag factor corresponding to $\frac{Sw'}{T}$ = 0.0976 is 0.01221

 $Sag = 0.01221 \times 125 = 1.530 \text{ ft.}$

= 18.3 inches

To find sag and tension under heavy loaded conditions:

Heavy loading — 1/2" radial ice and 4 lb. sq. ft. horizontal wind force at 0 F.

Constant k = 0.31

Weight of ice loading, i $= 1.24 \times t(D + t)$

 $= 1.24 \times .5 (2.50 + .5)$

= 1.860 lbs.

 $= \frac{P (D + 2t)}{}$ Horizontal force, h

12

= 1.167

Vertical weight of

loaded cable, w" = w' + i

= 2.712 + 1.860

= 4.572 lbs

 $=\sqrt{h^2 + (w' + i)^2} + k$ Resultant force, w"

 $=\sqrt{1.167^2 + 4.572^2} + .31$

= 4.72 + .31 = 5.03

The procedure for calculating the sag and tension under loaded conditions consists of finding the unstressed length of the cable, changing its length for the change in temperature and then stressing the cable for the new loaded conditions and determining the new sag and tension.

In the above calculations of normal sag we calculated

= 0.0976

Calculate Elongation factor

125 x 2.712 = 0.000162 2.088,000

From the curves on pages 48 and 49 determine the unstressed length factor for the abscissa $\frac{Sw'}{ae} = 0.000162$

and the curve $\frac{Sw'}{T} = 0.0976$

This is found to be 0.99873 = unstressed length factor

Correct this from 60F to 0 F.

Temperature correction factor of linear expansion

.0000072/F.

:. Correction of length factor = -60 x (.0000072)

= -.000432

Unstressed length at 0 F. = 0.99873-0.000432

= 0.99830

Calculate elongation factor for

loaded weight w" = 5.03 lbs./ft.

$$\frac{\text{Sw'''}}{\text{ae}} = \frac{125 \times 5.03}{2,088,000} = .000300$$

From the curves on pages 48 and 49 determine $\frac{SW}{T}$ for the

ordinance of 0.99830 and the abscissa of 0.000300.

This is found to be 0.126.

Calculate Tension T' under loaded conditions from

$$\frac{Sw'''}{T'} = 0.126$$

$$T' = \frac{125 \times 5.03}{0.126} = 4990 \text{ lbs}$$

This is seen to be 35.9% of the Ultimate strength of the

The sag factor is determined from Table on page 47 correspond-

ing to $\frac{Sw'''}{T'} = 0.126$ and is found to be 0.01578

Sag = 0.01578 x 125 = 1.970 ft. = 23.6 inches.

For stringing the cable it is usual practice to calculate the stringing tension (unloaded) for various temperatures and plot a curve for ready reference. The procedure is the same as in the above example using the unloaded cable weight. The work can be speeded by tabulating the calculations.

Stringing Temp. F 60 90

Correction for

-.00043 -.00022 +.00022 length

Unstressed length

factor .99830 .99851 99873 99895

For these values

and
$$\frac{Sw'}{ae} = .000162$$
 find $\frac{Sw'}{T} = .082$.090 .098 .106

Solving for

Stringing Tension T 4140 3760 3460

The sags may also be calculated if desired, but the spans usually vary so it is more convenient to pull the entire length of cable up to the desired tension rather than measuring the sag.

The above calculations are based on final stretch values. The messenger is usually over-stressed during installation so the final stretch values are more accurate than initial values.

Procedures

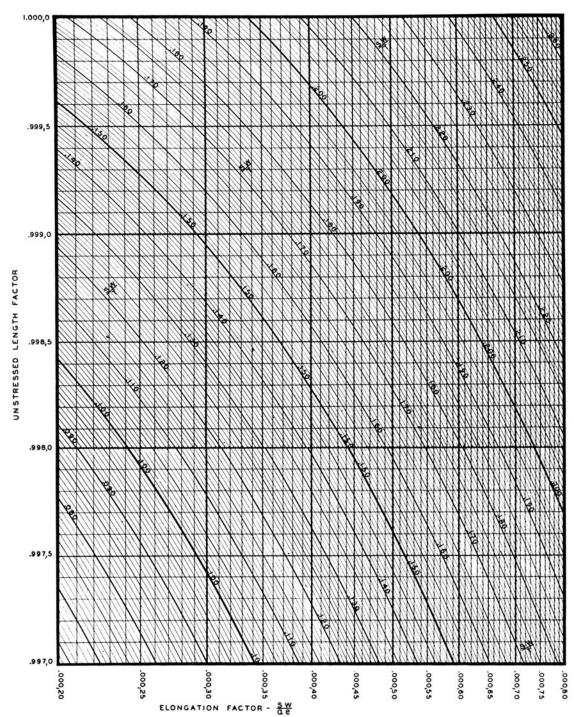
Sag Tables

oug	- abit											Т	able 7-11
SW	Sag	SW	Sag	SW	Sag	SW	Sag	SW	Sag	SW	Sag	SW	Sag
T	Factor	T	Factor	T	Factor	T	Factor	T	Factor	T	Factor	T	Factor
.050	.006 25	.100	.012 51	.150	.018 81	.200	.025 14	.250	.031 54	.300	.038 00	.350	.044 56
.051	.006 37	.101	.012 64	.151	.018 93	.201	.025 27	.251	.031 66	.301	.038 13	.351	.044 69
.052	.006 50	.102	.012 76	.152	.019 06	.202	.025 40	.252	.031 79	.302	.038 26	.352	.044 82
.053	.006 62	.103	.012 89	.153	.019 19	.203	.025 52	.253	.031 92	.303	.038 39	.353	.044 95
.054	.006 75	.104	.013 02	.154	.019 31	.204	.025 65	.254	.032 05	.304	.038 52	.354	.045 08
.055	.006 87	.105	.013 14	.155	.019 44	.205	.025 78	.255	.032 18	.305	.038 65	.355	.045 22
.056	.007 00	.106	.013 27	.156	.019 56	.206	.025 91	.256	.032 31	.306	.038 78	.356	.045 35
.057	.007 12	.107	.013 39	.157	.019 69	.207	.026 03	.257	.032 44	.307	.038 91	.357	.045 48
.058	.007 25	.108	.013 52	.158	.019 82	.208	.026 16	.258	.032 56	.308	.039 04	.358	.045 61
.059	.007 37	.109	.013 64	.159	.019 94	.209	.026 29	.259	.032 69	.309	.039 17	.359	.045 75
.060	.007 50	.110	.013 77	.160	.020 07	.210	.026 42	.260	.032 82	.310	.039 30	.360	.045 88
.061	.007 62	.111	.013 90	.161	.020 20	.211	.026 54	.261	.032 95	.311	.039 43	.361	.046 01
.062	.007 75	.112	.014 02	.162	.020 32	.212	.026 67	.262	.033 08	.312	.039 56	.362	.046 14
.063	.007 87	.113	.014 15	.163	.020 45	.213	.026 80	.263	.033 21	.313	.039 70	.363	.046 28
.064	.008 00	.114	.014 27	.164	.020 58	.214	.026 93	.264	.033 34	.314	.039 83	.364	.046 41
.065	.008 13	.115	.014 40	.165	.020 70	.215	.027 05	.265	.033 47	.315	.039 96	.365	.046 54
.066	.008 25	.116	.014 52	.166	.020 83	.216	.027 18	.266	.033 60	.316	.040 09	.366	.046 67
.067	.008 38	.117	.014 65	.167	.020 96	.217	.027 31	.267	.033 72	.317	.040 22	.367	.046 81
.068	.008 50	.118	.014 78	.168	.021 08	.218	.027 44	.268	.033 85	.318	.040 35	.368	.046 94
.069	.008 63	.119	.014 90	.169	.021 21	.219	.027 56	.269	.033 98	.319	.040 48	.369	.047 07
.070 .071 .072 .073	.008 75 .008 88 .009 00 .009 13 .009 25	.120 .121 122 .123 .124	.015 03 .015 15 .015 28 .015 40 .015 53	.170 .171 .172 .173 .174	.021 34 .021 46 .021 59 .021 72 .021 84	.220 .221 .222 .223 .224	.027 69 .027 82 .027 95 .028 08 .028 20	.270 .271 .272 .273 .274	.034 11 .034 24 .034 37 .034 50 .034 63	.320 .321 .322 .323 .324	.040 61 .040 74 .040 87 .041 00 .041 13	.370 .371 .372 .373 .374	.047 21 .047 34 .047 47 .047 61 .047 74
.075	.009 38	.125	.015 66	.175	.021 97	.225	.028 33	.275	.034 76	.325	.041 27	.375	.047 87
.076	.009 50	.126	.015 78	.176	.022 10	.226	.028 46	.276	.034 89	.326	.041 40	.376	.048 01
.077	.009 63	.127	.015 91	.177	.022 22	.227	.028 59	.277	.035 02	.327	.041 53	.377	.048 14
.078	.009 75	.128	.016 03	.178	.022 35	.228	.028 71	.278	.035 15	.328	.041 66	.378	.048 27
.079	.009 88	.129	.016 16	.179	.022 48	.229	.028 84	.279	.035 28	.329	.041 79	.379	.048 41
.080 .081 .082 .083	.010 00 .010 13 .010 26 .010 38 .010 51	.130 .131 .132 .133 .134	.016 29 .016 41 .016 54 .016 66 .016 79	.180 .181 .182 .183 .184	.022 60 .022 73 .022 86 .022 98 .023 11	.230 .231 .232 .233 .234	.028 97 .029 10 .029 23 .029 35 .029 48	.280 .281 .282 .283 .284	.035 40 .035 53 .035 66 .035 79 .035 92	.330 .331 .332 .333 .334	.041 92 .042 05 .042 18 .042 32 .042 45	.380 .381 .382 .383 .384	.048 54 .048 67 .048 81 .048 94 .049 07
.085 .086 .087 .088	.010 63 .010 76 .010 88 .011 01 .011 13	.135 .136 .137 .138 .139	.016 92 .017 04 .017 17 .017 29 .017 42	.185 .186 .187 .188 .189	.023 24 .023 36 .023 49 .023 62 .023 74	.235 .236 .237 .238 .239	.029 61 .029 74 .029 87 .029 99 .030 12	.285 .286 .287 .288 .289	.036 05 .036 18 .036 31 .036 44 .036 57	.335 .336 .337 .338 .339	.042 58 .042 71 .042 84 .042 97 .043 10	.385 .386 .387 .388 .389	.049 21 .049 34 .049 47 .049 61 .049 74
.090	.011 26	.140	.017 55	.190	.023 87	.240	.030 25	.290	.036 70	.340	.043 24	.390	.049 88
.091	.011 38	.141	.017 67	.191	.024 00	.241	.030 38	.291	.036 83	.341	.043 37	.391	.050 01
.092	.011 51	.142	.017 80	.192	.024 13	.242	.030 51	.292	.036 96	.342	.043 50	.392	.050 14
.093	.011 63	.143	.017 92	.193	.024 25	.243	.030 64	.293	.037 09	.343	.043 63	.393	.050 28
.094	.011 76	.144	.018 05	.194	.024 38	.244	.030 76	.294	.037 22	.344	.043 76	.394	.050 41
.095 .096 .097 .098	.011 89 .012 01 .012 14 .012 26 .012 39	.145 .146 .147 .148 .149	.018 18 .018 30 .018 43 .018 55 .018 68	.195 .196 .197 .198 .199	.024 51 .024 63 .024 76 .024 89 .025 02	.245 .246 .247 .248 .249	.030 89 .031 02 .031 15 .031 28 .031 41	.295 .296 .297 .298 .299	.037 35 .037 48 .037 61 .037 74 .037 87	.345 .346 .347 .348 .349	.043 90 .044 03 .044 16 .044 29 .044 42	.395 .396 .397 .398 .399	.050 55 .050 68 .050 82 .050 95 .051 08
.100	.012 51	.150	.018 81	.200	.025 14	.250	.031 54	.300	.038 00	.350	.044 56	.400	.051 22

Procedures

Sag Calculating Charts

Table 7-12


These charts reproduced through the courtesy of The FUSI Copperweld Steel Company

Procedures

Sag Calculating Charts

Table 7-13

These charts reproduced through the courtesy of The FUSI Copperweld Steel Company

High-Voltage Proof-Testing

High voltage dc field testing

In 1996, the insulated conductor industry determined that dc withstand testing of the plastic (XLPE) insulation systems either in the cable factory as a routine production test or after installation as the higher voltage proof test was detrimental to the life of the insulation and therefore discontinued recommending dc testing. Medium voltage EPR insulating systems are not subject to the same aging characteristics and, therefore, can be dc tested as required in accordance with Tables 8-1, 8-2 and 8-3.

When an insulated cable arrives on the job site, the recipient should be able to confidently assume it will attain the designed service life. This means it must arrive free of internal discontinuities in the dielectric such as voids or inclusions, as well as freedom from air pockets at the interfaces between the shielding systems and the dielectric's surfaces. It is, however, the specter of mechanical damage, or substandard splicing and terminating that could cause the engineers responsible for continuity of service to desire a field applied proof test to establish the cable's serviceability. The timehonored methods of proof testing in the field involve high potential direct current (dc). The advantage of the dc test is obvious. Since the dc potential does not produce harmful discharge as readily as the ac, it can be applied at higher levels without risk or injuring good insulation. This higher potential can literally "sweep-out" far more local defects. The simple series circuit path of a local defect is more easily carbonized or reduced in resistance by the dc leakage current than by ac, and the lower the fault path resistance becomes, the more the leakage current increased, thus producing a "snow balling" effect which leads to the small visible dielectric puncture usually obvserved. Since the dc is free of capacitive division, it is more effective in picking out mechanical damage as well as inclusions or areas in the dielectric which have lower resistance.

Field tests should be utilized to assure freedom of electrical weakness in the circuit caused by such things as mechanical damage, unexpected environmental factors, etc. Field tests should not be used to seek out minute internal discontinuities in the dielectric or faulty shielding systems, all of which should have been eliminated at the factory, nor should the dc potential be excessive such that it would initiate punctures in otherwise good insulation.

For low voltage power and control cables it is general practice to use a megger for checking the reliability of the circuit. This consists essentially of measuring the insulation resistance of the circuit to determine whether or not it is high enough for satisfactory operation. For higher voltage

cables, the megger is not usually satisfactory and the use of high voltage testing equipment is more common. Even at the lower voltages, high voltage dc tests are finding increasing favor. The use of high voltage dc has many advantages over other types of testing procedure.

dc field acceptance testing

It is general practice, and obviously empirical, to relate the field test voltage upon installation by using a percentage of the factory applied dc voltage. This means that prior to being connected to other equipment, solid extruded dielectric insulated shielded cables rated 5kV and up may be given a field acceptance test of about 300 volts per mil. The actual test values recommended for the field acceptance test are presented below in Table 8-1. If other equipment is connected it may limit the test voltage, and considerably lower levels more compatible with the complete system would be in order.

High voltage field acceptance test prior to being placed in service

Table 8-1

Rated Voltage Phase to Phase	dc Hi-Pot	Test (15 Minutes	dc Hi-Pot Test es)			
	Wall - mils	Kv	Wall - mils	kV		
5000	90	25	115	35		
8000	115	35	140	45		
15000	175	55	220	65		
25000	260	80	320	95		
28000	280	85	345	100		
35000	345	100	420	125		
46000	445	130	580	170		
69000	650	195	650	195		

Note: *If the leakage current quickly stabilizes, the duration may be reduced to 10 minutes

Test limitations

The dc leakage can be affected by external factors such as heat, humidity, windage, and water level if unshielded and in ducts or conduits, and by internal heating if the cable under test had recently been heavily loaded. These factors make comparisons of periodic data obtained under different test conditions very difficult. If other equipment is connected into the cable circuit this makes it even more difficult. In the event hot poured compound filled splices and terminations are involved, testing should not be performed until they have cooled to room temperature.

High-Voltage Proof-Testing

The relays in high voltage dc test equipment are usually set to operate between 5 and 25 milliamperes leakage. In practice, the shape of the leakage curve, assuming constant voltage, is more important than either the absolute leakage current of a "go or no go" withstand test result.

Test Notes

From the standpoint of safety as well as data interpretation, only qualified personnel should run these high voltage tests

After the voltage has been applied and the test level reached, the leakage current may be recorded at one minute intervals. As long as the leakage current decreases or stays steady after it has leveled off, the cable is considered satisfactory. If the leakage current starts to increase, excluding momentary spurts due to supply-circuit disturbances, trouble may be developing and the test may be extended to see if the rising trend continues. The end point is, of course, the ultimate breakdown. This is manifested by an abrupt increase in the magnitude of the leakage current and a decrease in the test voltage. It should result in relay action to "trip" the set off the line, but this assumes the equipment has enough power to maintain the test voltage and supply the normal test current. Since the total current required is a function of cable capacity, condition of dielectric, temperature, end leakage and length, the test engineer must be sure that "relay action" actually signifies a local fault, rather than being merely an indication that the voltage had been applied too quickly or one of the other factors contributing to the total current had been the cause.

At the conclusion of each test, the discharge and grounding of the circuit likewise requires the attention of a qualified test engineer to prevent damage to the insulation and injury to personnel.

Maintenance proof testing

It may be justifiable in the case of important circuits to make periodic tests during the life of the installation to determine whether or not there had been significant deterioration due to severe and perhaps unforeseen operational or environmental conditions. The advantage of a scheduled proof test is, of course, that it can frequently "anticipate" a future service failure, and the necessary repair or renewal can be made without a service interruption, usually during a major shutdown.

Furthermore, a dc test failure is seldom burned-out, and visual analysis may disclose the cause and permit corrective action.

As a note of caution, once a complete circuit has been connected and all exposed ends sealed, it is not desirable when maintenance proof-testing to remove these seals, disconnect the conductors, and it is sometimes impossible to

provide "ends" with adequate clearance and length of insulation surface to permit high voltage testing even at the levels specified in Table 8-2. Further, there is the danger of mechanically injuring the dielectric during the seal removal and end preparation. This is a major reason why a "megger test" is often used in maintenance checking of the numerous circuits in a power plant.

High voltage maintenance test for cables in service less than five years*

Table 8-2

Rated Voltage Phase to Phase	dc Proof Test (5 Minutes) kV
5000	20
8000	25
15000	40
25000	60
28000	65
35000	75
46000	100
69000	145

^{*}Consult manufacturer when cables are in service over five years.

Frequency of tests

In the case of power plants, it is customary to schedule desired maintenance proof tests to coincide with planned major shutdowns. It is not necessary or justifiable to check every circuit each year. The following schedule in Table 8-3 is suggested as a guide.

Frequency of proof testing

Table 8-3

Period After Installation Acceptance Test								
Class of Service	1st Maintenance test	2nd Maintenance Test	Period Between Succeeding Maintenance Test					
Lighting Normal Critical	No Test 3 years 12 - 18 months	No Test 8-9 years 2-3 years	None 5-6 years 4½ - 5 years					

Other Test Methods

Test methods such as VLF (Very Low Frequency) and Field Partial Discharge Testing are acceptable alternatives to the DC Hipot test. Refer to IEEE Guides 400.2 and 400.3 for additional information.

Okonite Cables

Section 9

Miscellaneous Information

Charging current

The charging current I of a single conductor insulated power cable can be obtained as follows;

 $I = 2\pi$ f C e microamperes per 1000 feet

Where: C = capacitance, picofarads per foot

e = Voltage, conductor to neutral, kilovolts

f = frequency, Hz

Capacitance of cables

The Capacitance of a one conductor shielded cable is given by the formula $C = \frac{7.35 \text{ (SIC)}}{Log}$

Where: C = capacitance of cable in picofarads per

foot

SIC = dielectric constant of the insulation

D = diameter over insulation d = diameter under insulation

Typical Values of SIC

Polyvinyl Chloride (PVC) · · · · · · · · 3.5 - 8.0
EP Insulation · · · · · · · · · · · · 2.8 - 3.5
Polyethylene Insulation • • • • • • • • 2.3
Cross Linked Polyethylene · · · · · · · 2.3 - 6.0

Insulation resistance

The insulation resistance (IR) of a cable can be estimated by the formula IR = K log $\frac{D}{d}$

Where

K = specific insulation resistance in megohms

-1000 ft. at 60°F

D = diameter over insulation

d = diameter under insulation

IR = insulation resistance in megohms - 1000 ft. for the particular cable construction. IR is inversely proportional to the cable length so that a 500 ft. length will have twice the IR of 1000 ft. and similarly 2000 ft. will have one half the IR of 1000 ft.

Typical Values of K

Synthetic Rubber, Heat and Moisture Resisting 75°C · · · · · · · · · 2000
EP Insulation (LV) · · · · · · · · · · · 20000
EP Insulation (HV) · · · · · · · · · · · 50000
Polyethylene · · · · · · · · · · · · · 50000
PVC · · · · · · · 2000
Cross Linked Polyethylene · · · · · · · · 20000

Miscellaneous Information

Jacket materials selection chart Relative performance data¹

Table 9-1

								i abie 9
Mechanical	PVC	TP-CPE	TS-CPE	TPP0	XLP0	PP	LLDPE	XLPE
Tensile Strength	Very Good	Good	Excellent	Good	Excellent	Excellent	Excellent	Excellent
Elongation	Very Good	Good	Excellent	Good	Excellent	Excellent	Excellent	Excellent
Flexibility	Excellent	Fair	Excellent	Fair	Excellent	Poor	Poor	Poor
Abrasion Resistance	Good	Very Good	Very Good	Very Good	Excellent	Excellent	Excellent	Excellent
Compression Resistance	Good	Excellent	Very Good	Excellent	Excellent	Excellent	Excellent	Excellent
Deformation Resistance (heated)	Fair	Fair	Excellent	Fair	Excellent	Poor	Poor	Good
Flame/Smoke/Halogen								
Resistance to Flame Propagation	Good	Excellent	Excellent	Very Good	Excellent	Poor	Poor	Poor
Fire Res	Yes	Yes	Yes	Yes	Yes	NO	NO	NO
Oxygen Index (%)	23-30	30-35	30-37	35-40	40-45	17-18	17-18	17-18
Halogen Content (%w)	26-25	18-20	16-18	0	0	0	0	0
Smoke Suppression	Very Poor	Very Poor	Very Poor	Excellent	Excellent	Fair	Very Poor	Fair
Low Smoke/Zero Halogen	NO NO	NO	NO	Yes	Yes	NO	NO	NO
Environmental								
Moisture	Good	Excellent	Excellent	Excellent	Excellent(1)	Excellent	Excellent	Excellent
Petroleum oils					,			
Motor oil	Good	Excellent	Good	Excellent	Good	Excellent	Excellent	Excellent
Fuel oil	Fair	Good ^B	Good	Good	Good	Excellent	Excellent ^c	Excellent
Crude oil	Fair	Good ^B	Good	Good	Good	Excellent	Excellent ^c	Excellent
Creosote	Poor	Good ^B	Fair	Good	Good	Excellent	Excellent ^c	Excellent
Paraffinic Hydrocarbons		5000						
Gasoline	Good	Excellent ^A	Very Good	Very Good	Very Good	Excellent	Excellent B	Excellent
Kerosene	Good	Excellent ^A	Very Good	Very Good	Very Good	Excellent	Excellent ^B	Excellent
Alcohols	Fair	Excellent	Good	Excellent	Excellent	Excellent	Excellent	Excellent
Isopropyl	l ruii	Exconone	acca	Executions	Executoric	Executoric	Excollent	Exconone
Methanol (woodl)								
Ethanol (grain)								
Mineral Acids	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent
Sulfuric	Excollent	LAGONOTE	Exoditoria	Exconone	Exconone	Excollent	LAGOMONE	Exconone
Nitric								
Hydrochloric								
Fixed Alkalis	Good	Excellent	Excellent	Excellent	Excellent	Excellent	Exce ll ent	Excellent
Sodium hydroxide (lye)	dood	LAGGIGIT	EXCONCIL	LAGGIGIT	LAGGIIGHT	LAGGIIGHT	LAGGIGIT	LAGGIIGHT
Potassium hydroxide (potash)								
Calcium hydroxide (lime)								
Galdium nyuruxiue (iiiile)								

Minimum installation temperature, see page 45.

NOTE:

PVC = Polyvinyl Chloride

XLPO = Cross Linked Polyolefin

TPPO = Thermoplastic Polyolefin

TS-CPE = Thermoset Chlorinated Polyethylene

TP-CPE = Thermoplastic Chlorinated Polyethylene

XLPE = Cross Linked Polyethylene

LLDPE = Linear Low Density Polyethylene

¹ Characteristics for generic versions of these materials are listed. Variations of these compounds are available to enhance properties such as arctic grade, fire resistance, etc...

A Slight swelling at higher temperatures

^B Poor above 110°C

^C Slight swelling above 60°C

Okonite Cables

Section 9

Miscellaneous Information

Decimal equivalents of one inch

Table 9-2

OI OIIC II	1011			l able 9-2
8ths	16ths	32nds	64ths	Decimal
_	_	_	1	.015625
_	_	1	2	.03125
_	_	_	3	.046875
_ _ _	1	2	4	.0625
_ _ _ 1	_	_	5	.078125
_	_	3	6	.09375
_	_	_	7	.109375
1	2	4	8	.125
_	_	_	9	.140625
_	_	5	10	.15625
_	_	_	11	.171875
_	3	6	12	.1875
_ _ _ _	_	_	13	.203125
_	_	7	14	.21875
	_	_	15	.234375
2	4	8	16	.25
_	_	_	17	.265625
_	_	9	18	.28125
_	_	_	19	.296875
_	5	10	20	.3125

Useful Identities, Equations and Conversion Factors

1 mil = 0.001"

1 circular mil = $(1 \text{ mil})^2$

Area of a circle = Π r² or Π D²/4

where,

 $\Pi=3.1416$

r = radius D = diameter

1 mm = 39.4 mils

1 mile = 5280 ft

1 km = 0.6214 miles

1 km = 3281 ft

1 mile = 1.609 km

1 inch = 25.4 mm

1 meter = 3.281 ft

1 meter = 39.37 inches

1 ton (US) = 2000 lbs

To Convert	Multiply by	To Obtain
mils	0.0254	millimeters
circular mils	5.07 x 10 ⁻⁴	square millimeters
inches	1.0 x 10 ³	mils
inches	25.4	millimeters
feet	3.048 x 10 ⁻⁴	kilometers
miles	1.609	kilometers
meters	3.281	feet
kilometers	0.6214	miles
kilometers	3.281 x 10 ³	feet
pounds	0.4536	kilograms
pounds	4.448	Newtons (joules/meter)
pounds/ft	1.488	kilograms/meter
tons (US)	0.9078	tons (metric)
psi	0.00689	megapascals (Mpa)
volts/mil	0.03937	kV/mm
ohms/1000 ft	3.28	ohms/km
gigaohms - 1000 ft	305	gigaohms-meter

Temperature conversion table

Ianie	
Ianie	

conversio	n table	<u>Table 9-3</u>
	TO CONVERT DEGREES	
To C	F or C	To F
-65.	-85	-121
-62.22	-80	-112
-59.45	-75	-103
-56.67	- 70	-94
-53.89	-65	-85
-51.11	-60	- 76
-48.34	-55	-67
-45.56	-50	-58
-42.78	-45	-49
-40.	-40	-40
-37.22	-35	-31
-34.44	-30	-22
-31.67	- 25	-13
-28.89	-20	-4
-26.11	-15	5
-23.33	-10	14
-20.56	-5	23
-17.78	0	32
-15.	5	41
-12.22	10	50
-9.44	15	59
-6.67	20	68
-3.89	25	77
-1.11	30	86
1.67	35	95
4.44	40	104
7.22	45	113
10.	50	122
12.78	55	131
15.56	60	140
18.33	65	149
21.11	70	158
23.89	75	167
26.67	80	176
29.44	85	185
32.22	90	194
35.	95	203
37.78	100	212
40.56	105	221
43.33	110	230
46.11	115	239
48.89	120	248
51.67	125	257
54.44	130	266
57.22	135	275
60.	140	284
62.78	145	293
65.56	150	302
68.33	155	311
71.11	160	320
73.89	165	329
76.67	170	338
79.44	175	347
82.22	180	356
85.	185	365
87.78	190	374
90.56	195	383
93.33	200	392
96.11	205	401
98.89	210	410
101.67	215	419
104.44	220	428
107.22	225	437
110.	230 235	446
112.78		455 464
115.56	240 245	464
118.33	245 250	473 482
121.11	250 255	482 491
123.89 126.67	260	500
129.44	265	509
132.22	270	518
135.	275	527
100.	LIV	ULI

Miscellaneous Information

Equivalents of sq. mm, sq. in. and circular mils

Table 9-4

and C	ircuia	ar miis									Table 9-4
Sq. mm	Sq. in.	Cir. mils	AWG (C.M.)	Sq. mm	Sq. in.	Cir. mils	AWG (C.M.)	Sq. mm	Sq. in.	Cir. mils	AWG (C.M.)
1000 975 950	1.550 1.511 1.472	1974000 1924700 1875300		95 90 85	0.1472 0.1395 0.1317	187530 177660 167790	0 (0 (1 0 7 0 0 0)	9.5 9.0 8.5	0.01472 0.01395 0.01317	18753 17766 16779	0 (10510)
925 900 875	1.434 1.395 1.356	1826000 1776600 1727300		80 75 70	0.1240 0.1163 0.1085	157920 148050 138180	3/0(167800)	8.0 7.5 7.0	0.01240 0.01163 0.01085	15792 14805 13818	8 (16510)
850 825 800	1.317 1.279 1.240	1677900 1628600 1579200		65 60 55	0.1008 0.0930 0.0853	128310 118440 108570	2/0(133100)	6.5 6.0 5.5	0.01008 0.00930 0.00853	12831 11844 10857	9 (13090)
775 750 725	1.201 1.163 1.124	1529900 1480500 1431200		50 45 40	0.0775 0.0698 0.0620	98700 88830 78960	1/0(105600) 1 (83690)	5.0 4.75 4.50	0.00775 0.00736 0.00698	9870 9377 8883	10 (10380)
700 675 650	1.085 1.046 1.008	1381800 1332500 1283100		35 30 25	0.0542 0.0465 0.0388	69090 59220 49350	2 (66360) 3 (52620) 4 (41740)	4.25 4.0 3.75	0.00659 0.00620 0.00581	8390 7896 7403	11 (8230)
625 600 575	0.969 0.930 0.891	1233800 1184400 1135100		20 19.5 19.0	0.0310 0.0302 0.0294	39480 38490 37510	. (,	3.50 3.25 3.0	0.00542 0.00504 0.00465	6909 6416 5922	12 (6530)
550 525 500	0.853 0.814 0.775	1085700 1036400 987000		18.5 18.0 17.5	0.0287 0.0279 0.0271	36520 35530 34550		2.75 2.50 2.25	0.00426 0.00388 0.00349	5429 4935 4442	13 (5180)
475 450 425	0.736 0.698 0.659	937700 888300 839000		17.0 16.5 16.0	0.0264 0.0256 0.0248	33560 32560 31580	5 (33090)	2.0 1.75 1.50	0.00310 0.00271 0.00233	3948 3455 2961	14 (4110) 15 (3260) 16 (2580)
400 375 350	0.620 0.581 0.542	789600 740300 690900		15.5 15.0 14.5	0.0240 0.0233 0.0225	30600 29610 28620		1.25 1.0 0.9	0.00194 0.00155 0.00140	2468 1974 1777	17 (2050) 18 (1620)
325 300 275	0.504 0.465 0.426	641600 592200 542900		14.0 13.5 13.0	0.0217 0.0209 0.0201	27640 26650 25660	6 (26240)	0.8 0.75 0.7	0.00124 0.00116 0.00109	1579 1481 1382	10 (1200)
250 225 200	0.388 0.349 0.310	493500 444200 394800		12.5 12.0 11.5	0.0194 0.0186 0.0178	24680 23690 22700		0.6 0.5	0.00093 0.000775	1184 987	19 (1290) 20 (1029)
175 150 125	0.271 0.233 0.1938	345500 296100 246800		11.0 10.5 10.0	0.0171 0.0163 0.0155	21710 20730 19740	7 (20820)				
100	0.1550	197400	4/0 (211,600)								

Okonite Cables Section 9

Miscellaneous Information

Capacity	of Re	els,	feet									Tal	ole 9-5
*Reel Code Drum Wt. Reel (Lbs) Max. Load (Lbs) Max. Overall Width (In)	2412 10 22 550 15	2418 10 24 550 21	2718 12 33 700 21½	3018 12 39 950 21½	3224 14 61 1500 28½	4024 17 90 2500 28½	4528 21 116 3500 32½	5032 24 178 4800 38	5832 28 250 6500 39½	6636 36 400 7000 43½	7636 40 568 9000 43½	7848 42 696 9000 56	8454 48 861 10000 62
CABLE O.D. .200 .250 .300 .350 .400	6401 4189 2913 2053 1572	9454 6331 4370 3080 2358	12341 7983 5636 4068 2919	16845 10685 7530 5339 4015	24920 15776 11075 7979 6016	25253 17337 12536 9886	24976 18489 13872	25984 19298	27681				
.450 .500 .550 .600 .650	1188 964 797 677 531	1806 1490 1235 998 813	2504 1890 1584 1297 1075	3258 2553 2194 1849 1585	4732 3733 3203 2768 2354	7604 6243 5101 4157 3609	10953 9025 7384 6009 5173	15210 12617 10574 8662 7062	21482 17314 14009 11674 10360	29143 23468 18909 15935 13999	27110 23381 18867		
.700 .750 .800 .850 .900	513 411 393 303 285	770 604 589 466 451	1017 81`5 666 646 626	1334 1101 932 907 749	1964 1659 1374 1302 1091	3085 2681 2297 1937 1901	4622 3973 3468 2988 2539	6239 5448 4824 4109 3551	8691 7695 6920 5999 5290	1612 10353 9144 8196 7285	16877 14429 12921 11011 9918	23671 19931 18163 15117 13522	29336 24938 22504 18904 17026
.950 1.000 1.050 1.100 1.150	290 212	435 328	492 472 452 338 320	724 581 556 530 408	1066 832 807 781 613	1635 1526 1285 1244 1024	2493 2076 2027 1719 1670	3501 2976 2819 2435 2377	4765 4119 3903 3438 2996	6417 5594 5332 4727 4010	8867 7861 7500 6777 5877	12249 10781 10439 9286 8189	15223 13501 12859 11502 10207
1.200 1.250 1.300 1.350 1.400			324	414	621 597 571 427 432	1039 999 798 761 771	1387 1341 1293 1043 1055	2018 1961 1632 1578 1523	2918 2505 2429 2351 1977	3913 3384 3291 3195 2712	5742 5094 4477 4350 4219	8072 7037 6247 5949 5826	9845 8852 7696 7567 7233
1.450 1.500 1.550 1.600 1.650						595 602 568 574 539	1010 964 796 756 764	1233 1245 1194 1206 1153	1903 1923 1582 1598 1528	2622 2530 2201 2118 2033	3653 3527 3151 3034 2915	5102 4982 4306 4192 4076	6365 6234 5419 5294 5167
1.700 1.750 1.800 1.850 1.900						426	623 729 541 545 550	899 907 861 868 875	1456 1234 1171 1181 1191	2049 1658 1670 1593 1604	2569 2460 2479 2367 2052	3463 3489 3380 3269 2836	4420 4302 4182 4059 3530
1.950 2.000 2.100 2.200 2.300							514 519 364	653 657 622 586 445	1126 928 878 827 662	1525 1265 1205 1143 859	1951 1965 1582 1501 1418	2737 2535 2153 2075 1994	3420 3309 2725 2639 2551
2.400 2.500 2.600 2.700 2.800								416	618 626 580 440 404	868 814 822 581 586	1180 1107 1119 829 837	1661 1590 1517 1148 1158	2034 1955 1874 1512 1444
2.900 3.000 3.100 3.200 3.300	Traverse Di		Head and Insig g. 24" Head, 12							541 546 550 354 356	774 781 787 546 550	1095 1104 1039 794 742	1374 1385 1313 1007 950
3.400 3.500 3.600 3.700 3.800	(3) These r rubber and	eels are inte	nches for all size inded for shippi ic Insulated Wird d covering.	ng						358 324 326	554 502 505 509 359	747 752 699 704 497	956 898 904 844 600
3.900 4.000 4.100 4.200 4.300											321 322	458 461 463 423	603 559 562 565 520
4.400 4.500 4.600 4.700 4.800													523 525 527 298 299

Miscellaneous Information

Dimensions and capacities of reels for wire and cables

Table 9-6 Reel Code Number Flange Diameter, Inches Traverse Width, Inches Drum Diameter, Inches Max. Overall Width, Inches Approx. Capacity, Cubic Inches Arbor Hold, Inches CABLE O.D. REEL CAPACITY, feet MIN. DRUM DIA.* 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1 40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3 10 3.20 3.30 3.40 *NOTE: As a multiple of the outside di-3.50 ameter of cable. 3.60 Minimum clearance under lags shall be 3.70 1 inch or 1 cable diameter, whichever is greater. 3.80 3.90 4.00

Miscellaneous Information

Dimensions and capacities of reusable reels for wires and cables

Reel Code Number	7836	7848	9054	9654	
Flange Diameter, Inches	78	78	90	96	
Traverse Width, Inches	36	48	54	54	
Drum Diameter, Inches	40	48	48	56	
Max. Overall Width, Inches	48	62	68	68	
Approx. Capacity, Cubic Inches	109600	119600	216000	226000	
Min. Arbor Hole, Inches	3	3	3	3	
CABLE O.D.		REEL CAPAC	CITY,feet		Min. Drum Dia.*
0.50					
0.60					
0.70					Î
0.80	12500	14000			
0.90	10500	11400			
1.00	8500	9500	15500	17200	
1.10	7000	7150	13500	14000	
1.20	5700	6000	10600	12000	
1.30	5000	5350	9200	10000	
1.40	4200	4500	7800	8500	
1.50	3500	3850	6800	7500	
1.60	3200	3400	5900	6300	
1.70	2900	2950	5600	6000	
1.80	2500	2650	4600	4800	
1.90	2400	2250	4000	4200	
2.00	1950	2100	3750	4000	16
2.10	1900	2000	3650	3600	
2.20	1700	1600	3000	3100	
2.30	1400	1400	2900	3000	
2.40	1400	1400	2400	2800	
2.50	1370	1350	2250	2300	
2.60	1100	1040	2150	2200	
2.70	1050	960	2100	2100	
2.80	1000	960	1800	2000	
2.90	950	880	1700	1600	
3.00	780	880	1650	1550	
3.10	780	650	1600	1450	
3.20	730	580	1300	1450	
3.30	730	580	1200	1400	
3.40		530	1200	1200	
3.50		530	1100	1100	
3.60		530	1050	1100	+
3.70		480	1000	950	†
3.80		480	850	950	14
3.90		300	850	900	
4.00		300	775	900	
			_		12

